²³⁹Pu Nuclear Data Improvements in Thermal and Epithermal Neutron Ranges D. Bernard^{1,a}, E. Fort¹, A. Courcelle¹, A. Santamarina¹, G. Noguère¹ **Abstract.** The analysis of k_{eff} multiplicative factor of 100%-MOx cores and plutonium solutions showed a systematic discrepancy between calculation and experiment. The aim of this paper is to propose an improved version of the JEFF-3.1 239 Pu evaluation in the low-energy neutron range. We propose here slight modifications of the evaluation file, consistent with the uncertainties of differential data measurements in sub-thermal/thermal and epithermal ranges, namely: modifications of the sub-thermal fission, capture and total cross-sections, and a revised evaluation of v_p from sub-thermal up to 20eV using a phenomenological formalism. The proposed modifications are described and tested against integral measurements. #### 1 Introduction ²³⁹Pu nuclear data accuracy is an important issue for reactor applications. k_{eff} analysis of Pu-fuelled systems showed systematic overestimation of the calculated core reactivity. The first part of this paper stresses the need for improvement. In the second, the proposed modification of cross sections and the modification of the mean number of fission neutrons are described. Eventually, the integral experiment validation is presented. ### 2 Need for improvement The good prediction of 239 Pu and 240 Pu contents in Post Irradiation Experiments Analysis mainly in PWR-MOx spent fuels [1] underline the good accuracy of the JEFF-3.1 resonance absorption and capture integral [2]. However, a systematic overestimation of calculated k_{eff} values (using Monte Carlo codes) is observed in the analysis of critical experiments. The iso-thermal moderator temperature analysis shows discrepancies between calculation and experiment as well. Owing to sensitivity studies, such independent integral experiments point out the need for improvement of neutron induced 239 Pu sub-thermal data (σ_{γ} , $\sigma_{\rm f}$, $\nu_{\rm p}$), thermal data ($\nu_{\rm p}$) and epithermal data ($\nu_{\rm p}$). ### 2.1 Analysis of Multiplicative factor measurements Two sources of critical experiments were considered in this study. First, the International Handbook of Evaluated Criticality Safety Benchmark Experiments [3] supplied various experiments with a wide neutron spectrum range. The second was provided by reactor mock-up experiments performed in dedicated facilities such as EOLE at Cadarache. The experimental validation of Monte Carlo codes through those integral experiments give clear trends on 239 Pu thermal nuclear data within technological uncertainties ranging from ± 200 pcm to ± 500 pcm at 1σ . Such integral experiments permit us to constraint the well-posed inverse problem and to improve 239 Pu nuclear data. Plutonium-Solution-Thermal (PST) benchmarks of the ICSBEP database, performed in the 60's, consist in critical measurements, of (H $^+NO^-_3$ + ^{239}Pu) liquid spheres with various diameters and various plutonium amounts. The JEFF-3.1 MCNP [4] analysis [5] shows a systematic overestimation from +1200pcm down to +200pcm as a function of the ^{239}Pu concentration (see Fig. 1). Notice that ^{239}Pu concentration infers a strong neutron spectrum hardening. The averaged overestimation by about (+700±200)pcm in the low ^{239}Pu concentration range (C_{Pu} < 80g/L) shows that $\eta{=}v.\sigma_f/(\sigma_\gamma{+}\sigma_f)$ value should be revised in the sub-thermal neutron range. **Fig. 1.** MCNP analysis of ICSBEP/PST benchmarks versus ²³⁹Pu amount with JEFF-3.1 nuclear data. Critical LWR-MOx lattices in EOLE facility at Cadarache were performed during the MISTRAL[6] and BASALA[7,8] _ ¹ CEA Cadarache, Bld 230, DEN/CAD/DER/SPRC/LEPh, 13 108 Saint-Paul-Lez-Durance Cedex, France ^a D. Bernard, e-mail: david.bernard@cea.fr experimental program. Besides the poorly predicted plutonium ageing, the JEFF-3.1 experimental validation using the TRIPOLI4 [9] Monte Carlo code shows a systematic overestimation of the whole fresh cores k_{eff} by about (+260±200)pcm for various moderation ratios or void fractions (see Table 1). Table. 1. TRIPOLI4 analysis of EOLE critical lattices. | EOLE mock-up | Pu Ageing | Moderation Ratio | (C-E) \pm (δ E) (pcm) | |----------------------------|-----------|------------------|---------------------------------| | MH1.2 (PWR-MOx mixed core) | 4 years | MR=1.2 | 280 ± 250 (1 σT4 =20pcm) | | MISTRAL-2 (PWR-MOx) | 8 years | MR=1.7 | 630 ± 250 (1 σT4 =20pcm) | | MISTRAL-3 (PWR-MOx) | 10 years | MR=2.1 | 710 ± 250 (1 σT4 =20pcm) | | BASALA-Hot (BWR-MOx) | 12 years | 42% void7 | 610 ± 250 (1 σT4 =20pcm) | | BASALA-Cold (BWR-MOx) | 13 years | 0% void | 700 ± 250 (1 σT4 =20pcm) | | FUBILA-Hot (BWR-MOx) | 1 year | 0% void | 250 ± 250 (1 σT4 =20pcm) | # 2.2 Moderator Temperature Coefficient measurements analysis Measurements of the Isothermal Temperature Coefficient (mainly driven by Moderator Temperature Coefficient: MTC) of 100%-MOx cores were performed in the EOLE facility in cold (20°C-80°C) and hot operation conditions (150°C-300°C). Experimental validation of the APOLLO2 [10] deterministic code, using both JEF-2.2 and JEFF-3.1 libraries based, demonstrate [7,11]: - a systematic underestimation of the MTC in cold conditions by about (-2.0±0.3)pcm/°C, - well-assessed MTC in hot conditions (+1.0 \pm 2.0)pcm/°C. The analysis of physical phenomena [11] has shown that the negative error in the low-temperature range is linked to the thermal spectrum shift effect, which is strongly dependant on the sub-thermal and thermal shapes of the plutonium cross sections. The 239 Pu α = $\sigma_{\gamma}/\sigma_{\rm f}$ proposed modification in the thermal range is shown in Fig. 2. Fig. 2. Proposed modification of the ^{239}Pu α value compared to JEF-2.2 and experimental values. ### 3 Revised ²³⁹Pu neutron-nuclear data Accurate independent integral experiments show the required enhancement of ²³⁹Pu neutron-nuclear data, namely subthermal cross sections levels and shapes and mean number of emitted neutrons per fission. ### 3.1 Sub-thermal neutron capture and fission cross sections Integral experiments have highly constraint the possible improvement of ²³⁹Pu in the sub-thermal energy range. The a priori differential uncertainties in this energy range are about a few percent (see the dispersion of EXFOR measurements in Fig. 3, 4 and 5 for total, capture and fission cross sections respectively). The given uncertainty of thermal values is 2barns for capture and 1barn for fission (1σ). The way to modify the cross section leaving unchanged the thermal and epithermal range is to adopt a new negative resonance close to the neutron separation energy. In JEFF-3.1, the ²³⁹Pu evaluation of resonance parameters below 2.5keV was performed by Derrien et al. [12] using the Reich-Moore formalism implemented in the SAMMY code [13]. Due to the interference between resonances in this formalism, the parameters of the added bound level have to be carefully chosen, namely the spin-parity values and phase/amplitude of the two fission widths. The adopted parameters are summarized in Table 2. **Table. 2.** Reich-Moore parameters of the added (²³⁹Pu+n)* bound level. | $E_0 = -20 \text{meV}$ | $J^\pi = 0^+$ | |---------------------------------------|-----------------------------| | $\Gamma_{\rm n} = 10^{-7} \text{meV}$ | Γ_{γ} = 6meV | | $\Gamma_{\rm fl} = -36 {\rm meV}$ | $\Gamma_{f2} = 0 \text{eV}$ | The modified shape of sub-thermal ²³⁹Pu cross sections are shown in Fig. 3, 4 and 5. Capture and fission thermal cross sections are modified by +2barns and -1barn respectively. The effective scattering radius was left unchanged; the scattering cross section is not affected. **Fig. 3.** Experimental, JEFF-3.1 and revised ²³⁹Pu total cross section. **Fig. 4.** Experimental, JEFF-3.1 and revised 239 Pu(n, γ) cross section. Fig. 5. Experimental, JEFF-3.1 and revised ²³⁹Pu(n,f) cross section. The product $\sigma(E) \cdot \sqrt{E}$ as a function of the neutron energy E, shown in Fig. 6, exhibits the 'non I/v' original JEFF-3.1 behaviour and revised fission and capture shapes. **Fig. 6.** Revised 239 Pu cross section shapes compared to '1/v' and JEFF-3.1 shapes. This modification of the sub-thermal fission to capture ratio improves the MTC prediction. Revised cross sections are in accordance with the 1σ a priori differential experiments uncertainties. ### 3.2 Mean number of prompt neutrons per fission The cross section modification is not sufficient enough to explain the k_{eff} overestimation in critical experiment analysis. Indeed, the ν_p needs to be revised as well. A phenomenological formalism [14,15] is applied to v_p . It consists first in breaking down the fission process into independent partial waves described with various reachable J^{π} values of the compound nucleus. Each J^{π} channel formation is associated to a probability expressed in term of fission channel cross sections. Hence, the total number of prompt neutrons is a linear combination of the number of prompt neutrons of each channel. Second, for a given channel, neutrons can be emitted by direct fission and after $(n,\gamma f)$ processes. The number of emitted neutrons after $(n,\gamma f)$ processes accounts for the reduced excitation energy after the electromagnetic transition. The decrease of prompt neutrons with the $(n,\gamma f)$ process is assumed to be proportional to the decrease of the compound-nucleus excitation energy. The formalism is summarized into the following equation: $$v = \sum_{J^{\pi}} \begin{bmatrix} v_0^{J^{\pi}} \frac{\sigma_{n,f}^{J^{\pi}} - \sigma_{n,f}^{J^{\pi}}}{\sigma_f} \\ + \frac{\sigma_{n,f}^{J^{\pi}}}{\sigma_f} \left(v_0^{J^{n'}} - E_{\gamma}^{J^{\pi}} \cdot \left(\frac{\partial v}{\partial E^*} \right)^{J^{n'}} \right) \end{bmatrix}$$ (1) - $v_0^{J^{\pi}}$: number of prompt neutrons emitted by direct fission of a compound nucleus J^{π} - $v_0^{J^{,\pi'}}$: mean number of prompt neutrons emitted by fission of a compound nucleus in $J^{,\pi'}$ state after prefission γ emission. $v_0^{J^{,\pi'}} = v_0^{J^{,\pi}}$ is assumed. - σ_f : total fission cross section including (n, γ f) reactions - $\sigma_{n,f}^{J^{\pi}}$: direct fission cross section of partial wave l,J - $\sigma_{n,\gamma}^{J^{\pi}}$: (n, γ f) cross section of partial wave l,J - $E_{\nu}^{J^{\pi}}$: total energy of pre-fission γ transitions - $(\partial v/\partial E^*)^{J^{,\pi'}}$: mean number of prompt neutrons emitted by direct fission of a compound nucleus $J^{,\pi'}$ per unit of its excitation energy. Only l=0 neutron wave is considered here. Hence, $J^{\pi}=0^+$ or 1^+ are reachable states for the $(^{239}\text{Pu+n})^*$ compound nucleus system. $v_0^{0^+}=2.890$ and $v_0^{1^-}=2.859$ are fitted on experimental v. The work of Shackleton [14] enables to assign $<\frac{\partial v}{\partial E}>=0.131\text{n/MeV}$ whatever the J^{π} values. This formalism is applied from sub-thermal neutrons up to E_n =20eV [16]. The modified, JEFF-3.1 original and available experimental values of prompt fission neutron number are shown in Fig. 7 and 8. This new evaluation agrees better with experimental measurements. **Fig. 7.** Revised ²³⁹Pu prompt neutron number per fission compared to JEFF-3.1 and experimental values. **Fig. 8.** Revised ²³⁹Pu prompt neutron number per fission compared to JEFF-3.1 evaluation. The modified mean number of prompt neutron fissions is less than in JEFF-3.1 evaluation by about -200pcm in the thermal range and close to the resonance energy peaks. This leads to a clear improvement for the neutron multiplicative factor prediction. ## 4 Integral validation of ²³⁹Pu revised nuclear data The modified nuclear data namely sub-thermal cross sections and $v_p(E_n \le 20 \text{eV})$ value improve: - the neutron multiplicative factor prediction by about 200pcm for PWR type systems up to 500pcm for subthermal spectrum systems, - the cold operation MTC by about +0.3pcm/°C. Finally, averaged discrepancies of $k_{\rm eff}$ prediction are summarized in Table 3. **Table. 3.** Integral validation of ²³⁹Pu revised nuclear data. | | JEFF-3.1evaluation | Present work | |--------------------------------|--------------------|---------------| | ICSBEP/PST sub-thermal systems | (+700±200)pcm | (+200±200)pcm | | ICSBEP/PST epithermal systems | (+340±200)pcm | (0±200)pcm | | Fresh 100%MOx-PWR type | (+260±200)pcm | (+130±200)pcm | k_{eff} discrepancies between calculation and experiment are cancelled using the ²³⁹Pu revised nuclear data. #### 5 Conclusion The aim of this paper was to describe the revised 239 Pu nuclear data taking into account independent integral experiments analysis. Sub-thermal level and shape of fission and capture cross sections are modified within 1σ differential uncertainties. A phenomenological formalism for prompt fission neutron number description is applied up to 20eV. The new evaluation can be found in ENDF format in the JEFF-3.2 β file available at the OECD/NEA. Integral validation emphasizes the cancellation of calculation/experiment discrepancies, namely for the $k_{\rm eff}$ of PWR-MOx whole fresh cores. Further studies are needed, namely: - measuring the shape of α and η value in the sub-thermal range, - understanding the fluctuations of prompt neutrons in the resonance range using a new formalism developed by Furman [17] which combines Bohr fission modes and Brosa fission channels. ### References - D. Bernard, A. Santamarina, "Experimental Validation of High Burnup MOx Fuels using APOLLO2 Code. JEF-2.2 Results and JEFF-3.0 Improvements", Proceeding of the International Conference on Reactor Physics PHYSOR'04, Chicago (USA). - 2. A. Koning, "The JEFF Evaluated Nuclear Data Project", Proceeding of the International Conference on Nuclear Data ND2007, this conference. - 3. J. Blair Briggs (Ed.), "International Handbook of Evaluated Criticality Safety Benchmark Experiments", NEA/NSC/DOC(95)03/I, Nuclear Energy Agency, September 2004 Edition, Paris (France). - J.F. Briesmeister (Ed.), "MCNP A General Monte Carlo N-Particle Transport Code, Version 4C", Technical Report LA-13709-M, Los Alamos 2000 (USA). - S.C. Van Der Marck, "Criticality Safety Benchmark Calculations with MCNP-4C3 using JEFF-3.1 Nuclear Data", NRG Report 2005. - C. Vaglio-Gaudard, A. Santamarina et al., "Accurate Calculation of Void Reactivity in MOx Lattices", Proceeding of the International Conference on Reactor Physics PHYTRA1, Marrakech (Marocco). - C. Vaglio-Gaudard, A. Santamarina et al., "Qualification of APOLLO2 BWR Calculation Scheme on the BASALA Mock-up", Proceeding of the International Conference on Reactor Physics PHYSOR2006, Chicago (USA). - 8. O. Litaize et al., "Monte Carlo Analysis of High Moderation 100% MOx BWR Cores using JEF-2.2 and JENDL3 Data", Proceeding of the International Conference on Reactor Physics PHYSOR'04, Chicago (USA). - 9. J-P. Both et al., "A Survey of TRIPOLI4", Proceeding of International Conference on Radiation Shielding 8, Arlington 1994 (USA). - 10. S. Loubière et al., "APOLLO2, Twelve Years Later", Proceeding of the International Conference on Mathematical and Computation M&C'99, Madrid (Spain). - L. Erradi, A. Santamarina and O. Litaize, "The Reactivity Temperature Coefficient Analysis in Light Water Moderated UO₂ and UO₂-PUO₂ Lattices", NSE 144, 47-74 (2003) - 12. H. Derrien, T. Nakagawa, "R Matrix Analysis of ²³⁹Pu Neutron Cross Sections in the Energy Range Up to 1000 eV", *NSE* 106, 434 (1990). - 13. N.M. Larson, "Resonance Parameter Analysis with SAMMY", Proceeding of the International Conference on Nuclear Data ND1988, Mito (Japan). - 14. D. Shackleton, Ph.D thesis, Paris (1974). - 15. E. Fort et al., "Evaluation of v_p for ²³⁹Pu: Impact for Applications of the Fluctuations at Low Energy", *NSE 99*, 375 (1988). - E. Fort, A. Courcelle, "Fluctuations of Fission Characteristics in the Resonance Range", Proceeding of the International Workshop on Nuclear Data WONDER'06, Cadarache (France). - 17. W.I. Furman, "Theory of Fission and Data Evaluation", Proceeding of the FJ/OH spring session '99, Geel (Belgium).