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FOREWORD

Slow source convergence has long been a challenge in some loosely coupled neutronics problems,
ranging from the Whitesides “criticality of the world” problem identified in 1971 to some very recent
burn-up credit benchmark calculation comparisons under the auspices of the OECD Nuclear Energy
Agency (NEA). In Monte Carlo calculations, slow convergence and statistical fluctuations can combine
to produce unreliable source distributions and fission rates as well as underestimates of keff and its
uncertainty. This problem is especially important when no symptoms of non-convergence are apparent
to the analyst.

To explore these problems for the benefit of the international criticality safety community, the
NEA Working Party on Nuclear Criticality Safety established an Expert Group on Source Convergence
in Criticality Safety Analysis in the fall of 2000. Aimed at fostering improved robustness of criticality
safety analyses with respect to source convergence, the group’s first task was to assemble four test
problems that represent cases previously encountered in criticality safety analyses. They are intended
to be used as a basis for comparison of source convergence performance rather than comparison of
physics results. The problems include a reactor fuel storage array, a spent fuel pin array, an aqueous
processing system and an array of small fissile components.

In this report on the Phase I work of the Expert Group, the multiple cases of each of these
problems have been analysed with a variety of codes to assess vulnerability to slow convergence and/or
the statistical fluctuations inherent in Monte Carlo calculations. Their results have been collated and
compared.

It is hoped that the development of improved methods to speed convergence or detect non-
convergence will emerge from these comparisons and from investigations carried out by the
participants and by others. In particular, statistical tests used to detect non-convergence ought to be
characterised partly by their reliability measured using the NEA source convergence test problems. The
four test problems can also be used to develop source convergence input parameter guidelines for
criticality safety codes and as training problems for criticality safety analysts.

This publication is available in colour on the NEA website at: 
www.nea.fr/html/science/pubs/2006/nea5431-source.pdf
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Chapter 1

INTRODUCTION

By R.N. Blomquist

This report describes the Phase I work done by the OECD/NEA Expert Group on Source
Convergence in Criticality Safety Analysis under the supervision of the Working Party on Nuclear
Criticality Safety during 1999-2005. Phase I consists mostly of specification and analysis of
computational test problems of interest to criticality safety analysts that exhibit source convergence
difficulties. It is aimed at improving the computational basis of criticality safety analyses. 

The practice of criticality safety engineering involves the use of criticality data derived from
experiments and associated calculations. A typical analysis will also include calculations solving the
neutron transport equation employing either the Monte Carlo method or deterministic methods. Both
kinds of calculations require computing the fission distribution iteratively until it is sufficiently
converged, and only then extracting the parameters of interest, e.g., the fundamental mode eigenvalue.
These calculations begin with a starting source determined by the user or by default in the computer
code. Unless there is spatial decoupling between fissionable components with very different spectra,
one can expect the neutron spectrum to converge very quickly, so the term “source convergence” in this
report refers to spatial fission distributions. A deterministic method is finished when the eigenvalue
convergence and source convergence criteria are met. A Monte Carlo method requires statistical
sampling after acceptable source convergence has occurred. Optionally, the statistical sampling can be
carried out using an initial source distribution from a sufficiently similar earlier calculation. Either way
the sampling process is continued until estimated uncertainties are sufficiently small (statistical
convergence).

Because the iteration process updates the generation source distribution, the estimated parameters
are not independent between generations. For some problems in which the neutronic coupling between
multiplying media is very small, the convergence rate of the fission source iterations is extremely slow.
Moreover, these calculations are characterized by a strong dependence of the results on the initial
source distribution, an indication that source convergence is not achieved. These effects are not
problems unless the analyst mistakenly decides the calculation has converged (because there is no
apparent change in the solution between iterations). In such cases, the estimated fission distribution will
be in error, and in some problems, the eigenvalue can be substantially under-predicted, with adverse
implications for the safety analysis.

Our premise is that an eigenvalue produced using an insufficiently converged source is not
reliably computed and should not be used in a safety analysis. Whether the source is sufficiently
converged depends on the purpose of the calculation and the nature of the system being analysed. A
conservatively calculated source can be acceptable where a bounding estimate is satisfactory. However,
evaluation of critical experiments and estimation of small reactivity effects should be based on much
tighter convergence criteria. Further, the sensitivity of keff to variations in the fission source can be a
consideration. For geometrically simple systems, the traditional way to check source convergence has
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been to check keff convergence for an increasing number of generations and for an increasing number
of skipped initial generations. Specific studies of fission source spatial distributions, however, are
important for neutronically complicated systems. 

It will be seen that the effect on the neutron multiplication factor (keff) of incomplete convergence
or other related computational difficulties sometimes is small. In practice, it is frequently possible to
compute a correct keff without completely converging the fission source distribution. The results
discussed in this report, however, show that statistical tests applied to Monte Carlo keff estimates do not
always perform well, nor do eigenvalue convergence tests in deterministic codes. 

Compared to deterministic methods, Monte Carlo calculations are more challenged by loosely
coupled systems because the method has three features that can prematurely make the source appear
converged. First, variance estimators frequently assume zero serial correlation [1,2]. If the source is not
converged, this assumption is invalid, and the uncertainties are underestimated. Low and shrinking
uncertainties are used by Monte Carlo analysts as indicators of both statistical and source convergence,
so any underestimation increases the risk of non-conservative results. Second, the power method on the
fission source iteration in Monte Carlo codes is unaccelerated. Deterministic transport codes usually
use well-known fission source iteration acceleration methods, but these are not very transferable to
Monte Carlo codes because of noise. Although some mitigating algorithms are available [e.g., 1, 3, 4],
these are insufficiently effective in severe cases. Finally, Monte Carlo source convergence difficulties
can arise because of undersampling in parts of the system [5]. Fortunately, there are several obvious
remedies for all three difficulties: (1) perform additional calculations with more histories and/or more
neutron generations used to converge the fission source, (2) perform similar calculations with a
different initial source and compare the solutions, and (3) apply statistical tests that provide the analyst
warnings when the fission source is insufficiently converged.

Which tests and methods are best applied, and how effective they are, is the object of work
underway at a variety of institutions with efforts in criticality safety analysis or development of its
supporting computational tools. The OECD Nuclear Energy Agency Expert Group on Fission Source
Convergence in Criticality Safety Analyses has specified four idealised test problems that represent
cases previously encountered in real criticality safety analyses. The Expert Group reviewed the
specifications, and various participants performed the specified calculations, along with other
calculations felt to be illuminating, and submitted their results to the coordinator for a particular test
problem. Chapters 2-5 present the specifications and the four coordinators’ reports on the accumulated
results.

These problems are intended for evaluation of source convergence algorithms and convergence
tests so that investigators working in different institutions can assess method and code performance
consistently. Of course, they also should make good test problems for training criticality safety
analysts. While retaining the source convergence properties of the original system, their specifications
have been modified to exclude proprietary information, to simplify input preparation, and to reduce
computation times. 

The computational control parameters (number of histories, etc.) included in the specifications are
not intended to be recommendations, but are specified merely for consistency of comparisons during
the first phase carried out by the members of the Expert Group. In order to highlight convergence
problems, some of these parameters are intentionally set to sub-optimal values that would be
completely unjustifiable in actual criticality calculations. In comparing results from the participants, the
differences in nuclear data, transport equation approximations, and reference solutions have not been
examined because they are outside of the scope of the study. Instead, the focus has been on convergence
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and statistical behaviour. The test problems will be described in detail in subsequent sections of this
report, but their overall characteristics are surveyed here.

Although each problem exhibits slow convergence, undersampling effects, source-related
statistical anomalies, or some combination of these effects, the effects of non-convergence on the
eigenvalue vary greatly. In general, very slow deterministic convergence occurs because the dominance
ratio (the ratio of the second largest to the largest eigenvalue) is nearly 1.0. In these cases, the shift in
eigenvalue estimates is small during the course of source iterations. In problems where the dominance
ratio is far from unity (say, < 0.96), the shift is larger, but convergence is much faster.

Test problem 1 was submitted by N. Smith (Answers Software, SERCO Assurance), and is
described in detail in Chapter 2. It is a fuel storage facility surrounded by concrete on three sides and
water on the fourth in which 36 identical fresh fuel assemblies with about 3.5 weight percent enriched
UO2 fuel and Zr clad are stored in an alternating (checkerboard) pattern with empty locations, in a
square grid demarcated by 1.0 cm steel plates. The fueled locations consist of a square pin lattice, and
all locations are flooded with water. Adjacent fuel assemblies are almost completely decoupled, so
deterministic and Monte Carlo calculations suffer from extremely slow convergence. A simplified
calculation using VIM established that the probability that a neutron born in one subassembly will
cause a fission in a particular adjacent column is about 0.003. To the naïve analyst, the problem layout
suggests a uniform guess, but this is quite unrealistic because the converged fission distribution peaks
in column 1, row 3 (the upper left corner), the only location bounded on two sides by concrete. For the
initial fission sites in the far end to migrate to the reactive corner unit during the source iterations, very
many generations will be required. Monte Carlo calculations may also show the effects of
undersampling if insufficient numbers of histories per generation are used. The thirty-six cases
specified differ only in their initial source distributions, generation sizes, and numbers of skip
generations. 

Case 27 is used here as a “reference” case. It is specified with uniform initial source, 
5 000 histories per generation, skip 100 before tallying. We refer to it because a naïve user might very
well select it as the best of all the specified cases, but it will be seen that this parameter set is clearly
not good enough. Instead, case 30 [starting source in cell (1,1)] is probably the best of the specified
cases. It is similar to what might be chosen as “best” by an experienced analyst [initial source in (1,3)],
or by one who studies the physics of the problem or performs a few simple preparatory calculations.
When an initial source much closer to the converged one is used, it is possible to converge the fission
source with far fewer skipped generations than one needs for a uniform starting source.

Figure 1.1 shows the influence of Monte Carlo computational strategy on estimated fission
distributions when a straightforward generation-by-generation power iteration is used and the assumed
initial source is uniform. Since the status of the fission source convergence is manifested mainly along
the x-axis, we show only the fission fractions for row 3 (along the long concrete face), which includes
the location with the most reactive cell. Using a seemingly reasonable set of the specified parameters
(case 27: uniform initial source, 5 000 histories per generation, skip 100 before tallying), the most
reactive fuel assembly is apparent, but its fission fraction is badly underestimated. As commonly
happens for very slowly converging problems, the uncertainties are also underestimated. Increasing the
number of histories per generation to 25 000 substantially improves both the cell fission fraction and
its uncertainty estimate, but not by enough for the source to be considered converged. (The effect on
keff, however, may not be large at this point). Skipping 500 generations instead of 100, and tallying over
1 000 generations nearly converges the fission distribution sufficiently to determine accurately the
additional reactivity due to reflection from two concrete faces. 
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Figure 1.1   Checkerboard system row 3 fission fractions for 3 cases

Table 1.1 shows the sensitivity of eigenvalues to the choice of Monte Carlo computational
parameters. For each set of calculations (by one code), the range of eigenvalues can be viewed as a
crude measure of the uncertainty embodying the combined effects of differing parameters and
(sometimes) different pseudorandom number sequences. The Table also shows the differences between
the largest eigenvalue and case 27. The last digits of the estimated uncertainties are shown in
parentheses. Clearly, the range of eigenvalues substantially exceeds the uncertainties, so these cases are
deemed to suffer from insufficient source convergence and/or inaccurate statistical treatment.
Statistical tests were unable to detect the eigenvalue drift (typically 0.002) during source iterations.
Additional experimentation showed that at least 700 skip generations are required to fully converge the
source using conventional power iterations.

Table 1.1   keff ranges (uncertainties) over all cases, and largest difference with case 27

aconventional power iteration, bsuperhistory method, cstratified sampling

Participant/Code Max(keff)–Min(keff) Max(keff)–Case 27 keff

ANL/VIMa 0.0040 (13) 0.0010 (16) 
JAERI/MCNP4Ba 0.0050 ( 9) 0.0025 ( 9) 
JNC/KENO-Va a 0.0063 (18) 0.0011 (14) 
KFKI/MCNP4Ca 0.0038 (14) 0.0010 ( 9) 
LANL/MCNP4Ca 0.0053 (12) 0.0023 ( 6) 
ORNL/KENO-Va a 0.0043 (10) 0.0000 (10) 
Answers/MONK8Ab 0.0047 (12) 0.0017 ( 8) 
EMS/KENO-Va a 0.0065 (18) 0.0025 (14) 
IRSN/MORET4a 0.0040 (15) 0.0029 (13) 
IRSN/MORET4b 0.0072 (13) 0.0045 ( 9) 
IRSN/MORET4c 0.0015 ( 9) 0.0015 ( 7) 
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Test problem 2 is a flooded infinite lattice of depleted LWR pins, as described in Chapter 3. Six
cases are considered which describe various symmetric and non-symmetric axial composition profiles
due either to axial enrichment grading or to an idealised burn-up profile. This is a simplified version of
the NEA Burn-up Credit (Phase II-A) Test Problem [6]. A 285.7 cm length of high-burn-up, strongly
absorbing, low-multiplication fuel in the center decouples the two reactive ends. Because there are only
two reactive regions, neither end is unsampled in typical Monte Carlo calculations. Calculations with
thousands of histories per generation are effectively unable to generate fissions in the high-burn-up
section, so neutron transport between the ends is not successfully simulated. Consequently, the
redistribution of fission sites will be effected entirely by action of the fission source algorithm. Even
for the cases with a large asymmetry, source convergence is somewhat slow, and it is extremely slow
for the nearly symmetric cases. The nearly symmetric cases require about 600 generations for source
convergence, and the eigenvalue drift during convergence is about 0.005. The axially symmetric cases
appear to produce non-symmetric fission distributions, but they are in fact exhibiting underestimates of
fission distribution uncertainties.

Test problem 3 (Chapter 4) models two rectangular tanks of uranyl nitrate solution decoupled by
an intervening moderating tank of water similar to the problem described in reference [3]. The
structures are omitted, leaving only the solutions. The twelve cases consist of varying the left solution
slab thickness to 12, 15, 18, and 20 cm, and the moderating slab to 10, 20, and 30 cm. This problem
was originally used to test a fission matrix method [3], which acts as a restoring force to unduly
fluctuating fission distributions. Due to relatively good coupling between the end slabs, the cases with
the 10 cm water slab did not exhibit major fluctuations in the fission distribution. With 30 cm thick
water, however, large asymmetric fluctuations resulted, with fission fraction ratios approaching 10. In
the most asymmetric cases, even with a 30 cm water slab, the source required only about 20 generations
to converge. The eigenvalue drift during convergence is about 0.01. 

One computational difficulty discovered during the study of problem 3 is that homogeneous
compositions can exacerbate the additional variance caused by using collisions to generate fission sites,
a common Monte Carlo technique [7]. This occurs because the number of collisions that generate
potential fission sites varies randomly, and in homogeneous systems every collision occurs with a non-
zero fission cross section. When combined with the system’s slow convergence, the result is a serious
underestimate in reaction rate variances. This was most clearly evident in the moderately decoupled
symmetric case (20-30-20) shown in Figure 1.2, when the fission fraction ratios reached 40. Selecting
fission sites on absorption in VIM calculations produced a dramatic reduction in the fission distribution
variation during the calculation. 

Even when 2 000 histories per generation are sampled, undersampling is possible, especially in
the most decoupled of the symmetric systems. Increasing the generation size further to 20 000
substantially reduced the fluctuations by reducing statistical variations. For the symmetric
configurations, the computed ratios of the fission fractions (theoretically 1.0) have no influence on keff.
To estimate keff correctly, the calculations need only include the interaction effects between the two
multiplying slabs and the correct flux shape within each one.
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Figure 1.2   Problem 3 fission fraction ratios for two fission site schemes

Problem 4 (Chapter 5) is a reduced-scale (5x5x1) version[8] of the 9x9x9 Whitesides problem [5],
an array of metal spheres in vacuum. The centre sphere is much larger than the others, so source sites
will accumulate in it while the source is converging. Unlike the checkerboard test problem where an
essentially one-dimensional array of cells acts to inhibit convergence, each sphere is directly (if
weakly) coupled to two to four others in its row and column, and to roughly half of the spheres. The
specified initial source contains only 125 neutrons per generation with a single neutron at the centre of
each sphere and 101 concentrated at the centre of the lower left corner sphere. This is deliberately
chosen to be far from the converged source distribution, possibly resulting in a badly underestimated
keff. Figure 1.3 shows the evolution of the instantaneous fission fraction of the central sphere during
each of 10 statistically independent replica calculations. The randomness introduced by undersampling
is dramatic, and it is easily reduced by increasing the number of histories per generation. It is clear that
this problem does not suffer from slow convergence per se; once the central sphere contains a few
fission sites, its fission fraction converges rapidly. In fact, this problem converges easily when a
uniform initial source is used. 

The authors of Chapter 5 compiled information about the codes used for test problem 4. In
general, these codes were also used for the other test problems as well.

Test problem 4 can be used to address the question of convergence reliability. Although it will
always converge eventually, the number of generations required varies randomly and widely.
Accordingly, Monte Carlo results were submitted by each participant for 100 statistically independent
replica calculations. This allowed estimation of the probability that the source fails to converge. In 
100 replicas, between 100 and 900 skip generations were required to converge the fission source. The
eigenvalue drift during convergence is 0.06. Stratified sampling and superhistory powering were found
to produce superior convergence performance compared to conventional power iterations, but did not
eliminate the possibility of non-convergence.
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Figure 1.3.   Problem 4 instantaneous fission fraction in central sphere for 10 replicas

The test problem comparison programme of the expert group has stimulated a useful set of
investigations into the algorithms currently used to propagate neutron sources in Monte Carlo
calculations. It is common knowledge that understanding the underlying physics of criticality problems
is necessary to ensure satisfactory source convergence in criticality calculations. These test problems
demonstrate that statistical tests applied to eigenvalue estimates cannot be relied upon to detect
inadequate source convergence. Furthermore, statistical tests commonly applied to detect non-
convergence are being evaluated, and new ones are being proposed and tested.
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Chapter 2

THE CHECKERBOARD FUEL STORAGE ARRAY: TEST PROBLEM 1

By M J Armishaw, D Hanlon, N R Smith
Serco Assurance

Overview

The model for Test 1 comprises a notional 24x3 LWR fuel storage rack with fuel elements stored
in alternate locations. The fuel elements are ~3.5% enriched-by-weight and are formed from a 15x15
lattice of Zr-clad UO2. They are located within fully water-flooded steel storage racks surrounded by
close-fitting full concrete reflection on three sides, with water on the remaining long side, top and
bottom, as shown below. At one institution (ANL), the pin lattice was modelled with volumetric
homogenization, with the remaining materials as specified.

Specifications

Material data

Table 2.1   Material atom densities (atoms/barn.cm)

Geometry

Figure 2.1 describes the problem geometry. The fuel elements are numbered as in a conventional
matrix, so that the lowest left-hand fuel element in the figure below is in position (1,1) and the top right-
hand fuel element is in position (23,3). 

Fuel
            238U  2.2380E-02     
               O             4.6054E-02     
            

235U  8.2213E-04     

Concrete
            H          5.5437E-03        
            C           6.9793E-03        
            SI           7.7106E-03      
            CA         8.9591E-03       
            O           4.3383E-02     

Water
            H              6.6706E-02                           
            O             3.3353E-02 

Iron
            FE          8.3770E-02 

Zirconium 
            ZR              4.2910E-02 
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Figure 2.1   Test problem layout

Calculation Cases

Four sets of calculations were required using each of the following starting source distributions:

Uniform over the 36 fuel elements:
All starting source points in location (1,1).
All starting source points in location (23,3).
All starting source points in location (12,2).

Each of the calculations was performed using 500 scored generations, and for each starting source
distribution, three different numbers of skipped generations were employed: 20, 40 and 100. In
addition, for each combination of initial source and skipped generations, three different numbers of

Fuel element location

Water channel location

Water

Concrete

Fuel element location Water channel location

27

27

15x15 lattice -
water moderated.
Centrally located.
pitch 1.4
fuel radius 0.44
clad radius 0.49

steel wall
thickness 0.5

water gap
thickness 3.0

81

728

40

30

40

40

A A’

All dimensions in cm

position
(1,1)

position
(23,3)

position (12,2)

In the vertical direction, the model is of height 420 cm, 
water reflector at the top and bottom. Within the 360 cm 
no axial variation.

View through AA’

420

30

30
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starting source points per iteration were used: 1 000, 2 000, 5 000. A total of thirty-six calculations,
specified in Table 2.2, form a complete set of results. 

Table 2.2   Case Monte Carlo control parameters

Required output

In addition to identifying information, the participants were asked to submit the information
specified in Table 2.3.

Case Starting Source Skipped 
Generations

Starting source 
points

1 Uniform 20 1 000 
2 Uniform 40 1 000 
3 Uniform 100 1 000 
4 Location (1,1) 20 1 000 
5 Location (1,1) 40 1 000 
6 Location (1,1) 100 1 000 
7 Location (23,3) 20 1 000 
8 Location (23,3) 40 1 000 
9 Location (23,3) 100 1 000 

10 Location (12,2) 20 1 000 
11 Location (12,2) 40 1 000 
12 Location (12,2) 100 1 000 
13 Uniform 20 2 000 
14 Uniform 40 2 000 
15 Uniform 100 2 000 
16 Location (1,1) 20 2 000 
17 Location (1,1) 40 2 000 
18 Location (1,1) 100 2 000 
19 Location (23,3) 20 2 000 
20 Location (23,3) 40 2 000 
21 Location (23,3) 100 2 000 
22 Location (12,2) 20 2 000 
23 Location (12,2) 40 2 000 
24 Location (12,2) 100 2 000 
25 Uniform 20 5 000 
26 Uniform 40 5 000 
27 Uniform 100 5 000 
28 Location (1,1) 20 5 000 
29 Location (1,1) 40 5 000 
30 Location (1,1) 100 5 000 
31 Location (23,3) 20 5 000 
32 Location (23,3) 40 5 000 
33 Location (23,3) 100 5 000 
34 Location (12,2) 20 5 000 
35 Location (12,2) 40 5 000 
36 Location (12,2) 100 5 000 
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Table 2.3   Information to report

Cumulative fission fractions ff(i,g) in fissionable region i and generation g is also an important
output. As all computer codes do not have the capability of printing this information for any generation,
participants may choose between the following alternatives:

1) Fission fractions are given as average over all generations. 
2) Fission fractions are given as average over all active generations.
3) Fission fractions are given at different generation sequences.

Results

Results were received from the participants listed in Table 2.4.

Table 2.4   Participants and codes

Cumulative keff values were produced for each case for every twenty generations (including during
the skipped generations). In addition, the fraction of fission events in each of the thirty-six fuel
elements at the end of the calculation was reported. 

The keff versus case number for each of the contributors was plotted (Figure 2.2) to investigate
whether there were any effects caused by the control and source parameters. It is important to note that

Group Code Data Contributor(s) 
ANL VIM ENDF/B-V R Blomquist  
JAERI MCNP 4B JENDL-3.2 T Kuroishi  
JNC KENO-Va SCALE4.4 S Nobutoshi  
KFKI MCNP 4C ENDF/B-V&VI G Hordosy  
LANL MCNP 4C ENDF/B-VI F Brown 
ORNL KENO-Va ENDF/B-V J Wagner, L Petrie  
SERCO Assurance MONK8A JEF-2.2 D Hanlon 
EMS KENO-Va SCALE4.4 D Mennerdahl 
IRSN MORET4 JEF-2.2 J Miss, O Jacquet 

Line Required information 
12 Starting source  
13 nskip = number of generations skipped before beginning tallies 

or before convergence: 
14 ngen = number of generations tallied 
15 nhist = number of histories per generation 
16 ngensh = number of generations per superhistory 
17 final keff estimate 
18 final keff estimate uncertainty (one standard deviation) 
19 keff estimate for first supergeneration 
20 individual keff estimate for second supergeneration 
… … 

18+ngen individual keff estimate for last supergeneration 
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the final eigenvalues may differ due to differing degrees or rigour in the geometric modelling used, for
example the volume-homogenised compositions used in the ANL analyses. Pseudorandom number
seeds were not necessarily varied from case to case. When they were not, the difference between (for
example) case 2 and case 1 is due only to ignoring the additional skipped generations (21-40) and
including the 20 later generations (521-540) in the tallies, i.e., generations 41-520 are identical. Figure
2.2 also shows a pattern across case numbers consistent with consistent seeds, which most or all of the
participants used. 

Figure 2.2   Final keff .vs. Case number

Due to the large amount of data returned, the decision was made to limit the detailed analysis to
three cases for each contributor. Of the 36 cases to be run, case 27 was deemed to have the combination
of control data most likely to achieve convergence (uniform source, 100 skipped generations and 5 000
source points per iteration), so it was chosen as a reference case. The other two cases chosen were those
with the minimum and the maximum keff for each contributor, which were assumed to be least
converged. The selected case numbers (in italics) and the corresponding keff results are listed in 
Table 2.5. It should be noted that the maximum and minimum cases in the table are essentially samples
from ensembles. Accordingly, there are some instances where the maximum keff is unexpectedly
obtained for a case with an adverse initial source distribution. Which cases produced the maximum keff

is, therefore, displays some randomness, in spite of the fact that one would expect the initial source in
(1,1) to be most favorable. To confirm this, a set of VIM calculations were performed, using unique
random number seeds and averaged over three like cases that differed only in the number of skipped
generations. The three average keff values for the initial source in (1,1) for 1 000, 2 000, and 5 000
histories per generation, respectively, were always significantly above the averages from the other
corresponding cases with other initial sources, which were statistically indistinguishable from each
other.

k-effectives by Case Number
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Table 2.5   Keff results for selected cases for each contributor

In the case of the IRSN results, there are three fission source algorithms for the MORET4 code:
conventional, superhistory and stratified sampling (only a subset of the cases were run using the last
method). In this paper, only the conventional results have been examined because they appear to give
the least variation between the maximum and minimum values of keff.

Having identified three cases for each contributor, the individual keff for each supergeneration
(comprising 20 generations) was plotted to investigate the variation in keff as the runs progress. The
plots for each of the contributors are shown in Figures 2.3 to 2.10 inclusive. Inspection of these plots
shows that any trends in keff over the course of the calculations are difficult or impossible to discern.

The final keff supplied by JAERI for each of the cases was based on a combination of the collision,
absorption, and track length, but individual keff data was only supplied for the three estimators
separately. The decision was made to use the absorption estimator data for the plots because this
showed the least variation from the final results. No generation data were provided with the final KFKI
results, hence their omission from the figures.

The cumulative fission fractions in each element at the end of each case were also requested to
provide some insight into how the source distribution has changed from the initial source guess. These
results are listed in Tables 2.6 to 2.14 inclusive. Each table header gives the case number, the total
number of generations run, the number of skipped generations, the number of histories per generation,
and the initial source position.

JAERI 0.8870 (0.0005) 36 0.8920 (0.0008) 18 0.8895 (0.0005) 
JNC 0.8773 (0.0013) 11  0.8836 (0.0013) 6    0.8825 (0.0006) 
KFKI 0.8800 (0.0011) 12   0.8838 (0.0008) 18  0.8828 (0.0005)  
LANL 0.8773 (0.0011) 10   0.8826 (0.0004) 30  0.8803 (0.0004)  
ORNL 0.8782 (0.0007) 34   0.8825 (0.0007) 27  0.8825 (0.0007) 
Serco 0.8837 (0.0010) 20   0.8884 (0.0006) 25  0.8867 (0.0006) 
EMS 0.8786 (0.0012) 9    0.8851 (0.0013) 6  0.8826 (0.0005) 
IRSN-Conv 0.8949 (0.0009) 21   0.8989 (0.0012) 2   0.8960 (0.0005) 
IRSN-SHist 0.8931 (0.0013) 10   0.9003 (0.0005) 30  0.8958 (0.0007) 
IRSN-Strat 0.8965 (0.0008) 13   0.8980 (0.0005) 27   0.8965 (0.0015) 

                    Min               Max               Case 27 
ANL 0.8508 (0.0006) 35 0.8548 (0.0015) 11 0.8538 (0.0006)  
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Figure 2.3   ANL individual keff .vs. generation number

Figure 2.4   JAERI individual k(abs) .vs. generation number
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Figure 2.5   Plot of JNC individual keff .vs. generation number

Figure 2.6   Plot of LANL individual keff .vs. generation number
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Figure 2.7   Plot of ORNL individual keff .vs. generation number

Figure 2.8   Plot of Serco Assurance individual keff .vs. generation number
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Figure 2.9   Plot of EMS individual keff .vs. generation number

Figure 2.10   Plot of IRSN individual keff .vs. generation number
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Conclusions

Inspection of the plot of keff versus case number for all the contributors shows there is a significant
variation in keff with starting source position. The plot shows a less marked variation with the number
of skipped generations and the number of starting source points per iteration. There are some patterns
visible in the plots of keff versus case number, with a correlation between the final value of keff and the
initial source distribution. Keff values from an initial source in position (1,1) appear to be higher than
those from a flat source distribution which are in turn higher than those values obtained from a start in
positions (12,2) and (23,3).

The distribution of cumulative fission fractions by element shows large variations. In some cases
only a few elements adjacent to the starting point position have been sampled, leading to a potentially
biased value for keff. In general, where the source guess is limited to a single element, the fission
fractions remain concentrated near to the initial source guess. Where the initial source distribution was
uniformly spread across the model, we see more of a migration to the more reactive components. A
failure to sample every part of the system is not necessarily due to a problem (it could be the result of
successful convergence). In this case we know what the distribution should be: almost half of the
fissions occur in the corner position (1,3) and essentially the rest in the neighboring positions.
Significant fission fractions in other positions may indicate incomplete source convergence.

Two groups of methods can be identified based on the results. KENOVa and MCNP4C give
similar results concerning source convergence to position (1,3) when the initial source was in position
(1,1). The codes MONK8A, MORET4 and VIM do not find the correct source distribution as easily.
The more complicated sampling algorithms in the latter codes seem to slow convergence. Later
calculations with VIM, using more histories, supported the results by KENOVa and MCNP4C. Two
further studies which might prove interesting would be: firstly to inspect the fission fraction of all those
cases which gave the “correct” keff; secondly to determine whether any cases with apparently suitable
fission fraction distributions gave an inappropriate keff. These studies would demonstrate whether the
distribution of fission fractions could be used as a measure of convergence – bearing in mind that for
the practical use of this method some idea of the correct distribution would be needed beforehand. In
criticality safety assessment, the analyst normally has a good idea of the correct distribution based on
experience and on preliminary calculations of simpler systems.

Part of the remit for this work was to offer guidance to analysts so they could identify when a case
has failed correctly to converge. From the results available here, the most useful, though not infallible,
indicator is the cumulative fission fractions. There are two steps in a Monte Carlo evaluation. The first,
fission source convergence, is to determine a converged fission source. This can be done in various
ways, including using previous experience and preparatory calculations using different initial sources.
The second step, statistical convergence, is to use a sufficiently converged source as an initial source
for a purely statistical calculation of keff. If, in spite of this, the second step results in a significant
deviation between the initial source and the final source, further evaluation is in order.

All of the codes used have shown some degree of inability to cope with this test, particularly
where the initial source has been poorly specified. All of the calculation cases have fixed specifications
and none of them are typical for an acceptable criticality safety application of the codes used. The code
user must be expected to understand both the physics of the problem as well as the capabilities and
limitations of the code. Convergence problems need to be compensated by skepticism of one’s own
results, independent internal review, and through the licensing process.
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The increasing power of computers is leading to ever more criticality cases being run, often to
reduce the potential for mistakes in a single calculation. This is a great benefit for safety since many
extra "what if"-calculations can be carried out to reduce uncertainties and to increase understanding.
Even so, the codes need to include some sort of automated checking to advise when convergence may
be failing. It is vitally important that this work should continue, with the aim of enabling us to provide
the information both analysts and developers need to identify when these problems occur.
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Chapter 3

PIN-CELL ARRAY WITH IRRADIATED FUEL: TEST PROBLEM 2

By Yoshitaka Naito, Jinan Yang (NAIS Co. Inc.)

Overview

The test problem “Pin-cell array with irradiated fuel” is a problem which has been chosen for the
purpose of studying the source convergence for Monte Carlo calculations applied to LWR spent fuel
pools. The composition of LWR spent fuel consists of more reactive, low burn-up end regions separated
by a long, less active, high burnup region. Such a configuration is similar to two loosely coupled
reactors, for which it is difficult to obtain source convergence using the Monte Carlo method.
Moreover, if the axial profile of the fuel composition is asymmetric (as it is in discharged fuel), the
source distribution will be quite different from that obtained from a case with symmetrical composition.
In such a case, it is difficult to determine whether the source is converged or not, and it is difficult to
determine an adequate number of skip cycles. This test problem was originally formulated by
modifying an OECD/NEA burn-up credit problem[1] Phase IIA on the effect of axial burn-up profiles. 

Specifications

Geometry

These tests are composed of an infinite fuel pin array in water. Figure 3.1 depicts the horizontal
geometry of the unit cell, and Figure 3.2 depicts the axial geometry, including the division of the fuel
material into 9 regions. A reflecting boundary condition is assumed at the boundary of the square cell
of water. 

Material

The atom densities of the fuel types for fresh fuel and structural materials are given in Table 3.1,
while the atom densities of the fuel at various burnups are given in Table 3.2.

Case identification

Six cases of test problems are identified for solving source convergence problems on criticality
analyses. The fuel composition axial distributions are defined in Table 3.3 using abbreviations (NU for
natural uranium, EU45 for 4.5% enriched fresh uranium, EU40 for 4.0% enriched fresh uranium, B21
for 21GWD/MTU burn-up fuel, etc.).
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Cases 1_1 through 1_3 contain fresh fuel only. The two end parts of the fuel rod are separated by
a central natural uranium region. Both axially symmetric (Case 1_1) and asymmetric (Cases 1_2, 1_3)
configurations of the fuel rod are proposed. This is based on the fact that a highly asymmetric power
distribution appears in a weakly coupled asymmetric reactor core. Cases 2_1 through 2_3 are composed
of irradiated fuels. Similarly, both axially symmetric (Case 2_1) and asymmetric (Cases 2_2, 2_3)
configurations of the fuel rod are specified. 

Figure 3.1   Horizontal configuration of unit cell

Figure 3.2   Vertical cross-section
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Table 3.1   Atom densities (atoms/barn-cm) for fresh fuel

Fuel-type EU45
Fresh fuel U(4.5wt.%)O2 enriched

234U 8.4100E-06
235U 1.0526E-03
236U 6.4752E-06
238U 2.2042E-02

O 4.6219E-02
Fuel-type EU40

Fresh fuel U(4.0wt.%)O2 enriched 
234U 7.5481E-06
235U 9.3949E-04
238U 2.2256E-02

O 4.6405E-02
Fuel-type NU
U (natural)O2

234U 1.2757E-06
235U 1.6700E-04
238U 2.3026E-02

O 4.6388E-02
Zircalloy-4

Cr 7.5891E-05
Fe 1.4838E-04
Zr 4.2982E-02

Light Water
25deg.C

H 6.6658E-02
O 3.3329E-02 
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Table 3.2   Atom densities (atoms/barn-cm) of irradiated fuels 239Pu

Fuel-Type B21G B24G B30G B40G B55G

4.5 wt% 235U
21.57

GWD/MTU

4.5 wt% 235U
24.023

GWD/MTU

4.5 wt% 235U
30.580

GWD/MTU

4.5 wt% 235U
40.424

GWD/MTU

4.5 wt% 235U
54.605

GWD/MTU
234U 6.4862E-06 6.2881E-06 5.7868E-06 5.1152E-06 4.3280E-06
235U 5.6757E-04 5.2562E-04 4.2455E-04 3.0002E-04 1.7108E-04
236U 9.4556E-05 1.0155E-04 1.1763E-04 1.3534E-04 1.4897E-04
238U 2.1732E-02 2.1693E-02 2.1585E-02 2.1413E-02 2.1142E-02

238Pu 1.1322E-06 1.4876E-06 2.7262E-06 5.3656E-06 1.0471E-05
239Pu 1.2591E-04 1.3161E-04 1.4249E-04 1.5064E-04 1.5300E-04
240Pu 2.6395E-05 2.9965E-05 3.9140E-05 5.1484E-05 6.5540E-05
241Pu 1.3614E-05 1.5953E-05 2.1863E-05 2.9175E-05 3.6032E-05
242Pu 2.2623E-06 3.0335E-06 5.6472E-06 1.0893E-05 2.0303E-05

241Am 4.0266E-06 4.7603E-06 6.6579E-06 9.0866E-06 1.1405E-05
243Am 2.6222E-07 3.9809E-07 9.7353E-07 2.5108E-06 6.1550E-06
237Np 6.8089E-06 7.9041E-06 1.0948E-05 1.5602E-05 2.1806E-05
95Mo 3.1530E-05 3.4781E-05 4.3130E-05 5.4806E-05 6.9892E-05
99Tc 3.0319E-05 3.3465E-05 4.1531E-05 5.2746E-05 6.6975E-05

101Ru 2.7452E-05 3.0548E-05 3.8751E-05 5.0881E-05 6.7875E-05
103Rh 1.7260E-05 1.9008E-05 2.3371E-05 2.9057E-05 3.5406E-05
109Ag 1.8879E-06 2.2230E-06 3.1774E-06 4.7134E-06 6.9836E-06
133Cs 3.3140E-05 3.6549E-05 4.5257E-05 5.7263E-05 7.2263E-05
147Sm 6.4488E-06 6.9339E-06 8.0315E-06 9.2075E-06 1.0106E-05
149Sm 1.9390E-07 1.9611E-07 1.9935E-07 1.9993E-07 1.9259E-07
150Sm 7.1174E-06 8.0472E-06 1.0496E-05 1.3997E-05 1.8627E-05
151Sm 5.7531E-07 6.0064E-07 6.6160E-07 7.3765E-07 8.1779E-07
152Sm 3.0178E-06 3.3473E-06 4.1844E-06 5.3316E-06 6.7637E-06
143Nd 2.5793E-05 2.8067E-05 3.3502E-05 3.9984E-05 4.5992E-05
145Nd 1.8633E-05 2.0504E-05 2.5263E-05 3.1783E-05 3.9892E-05
153Eu 2.0026E-06 2.3329E-06 3.2546E-06 4.6705E-06 6.5858E-06
155Gd 1.1986E-07 1.4386E-07 2.2155E-07 3.6871E-07 6.0862E-07

O 4.6219E-02 4.6219E-02 4.6219E-02 4.6219E-02 4.6219E-02
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Table 3.3   Fuel composition identification for each region

Calculation control parameters

To calculate eigenvalue problems by the Monte Carlo method, the following data must be input:
the starting source, the number of generations skipped before beginning tallies (nskip), the number of
generations tallied (ngen), and the number of histories per generation (nhist). The data on ngen and
nhist are fixed as 100 and 100 000 for our test calculation, respectively. To determine a realistic nskip
value, the test problems were solved with the Monte Carlo code MCNP. The relations between keff

(standard deviation) and nskip are shown in Figures 3.3-3.9. From these figures, one can see an nskip
of 200 is necessary to obtain a stable keff for cases 1_1, 1_2, 2_1 and 2_2. For cases 1_3 and 2_3, a
much larger nskip seems to be required. For our calculations, we have fixed nskip at 200 and ngen at
1 000 to compare with calculation results from each participant.

Required output

In addition to identifying information, the participants were asked to submit the information
specified in Table 3.4.

Case1_1 Case1_2 Case1_3 Case2_1 Case2_2 Case2_3 

Region Fuel-type Fuel-type Fuel-type Fuel-type Fuel-type Fuel-type 

1 EU45 EU45 EU45 B21G B21G B21G 

2 EU45 EU45 EU45 B24G B24G B24G 

3 EU45 EU45 EU45 B30G B30G B30G 

4 EU45 EU45 EU45 B40G B40G B40G 

5 NU NU NU B55G B55G B55G 

6 EU45 EU40 EU45 B40G B55G B40G 

7 EU45 EU40 EU45 B30G B40G B30G 

8 EU45 EU40 EU40 B24G B30G B30G 

9 EU45 EU40 EU40 B21G B24G B24G 
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Table 3.4   Information to report

Cumulative fission fractions ff(i,g) in fissionable region i in generation g is also an important
output. As all computer codes do not have the capability of printing this information for any generation,
participants may choose between the following alternatives:

1)   Fission fractions are given as average over all generations.
2)   Fission fractions are given as average over all active generations.
3)   Fission fractions are given at different generation sequences.

Results

Participants

The eight groups and the calculational control parameters each group used are shown in Table 3.5.

Line         Required information 
12 Starting source  
13 nskip = number of generations skipped before 

beginning tallies or before convergence: 
14 ngen = number of generations tallied 
15 nhist = number of histories per generation 
16 ngensh = number of generations per superhistory 
17 final keff estimate 
18 final keff estimate uncertainty (one standard 

deviation)
19 keff estimate for first supergeneration 
20 individual keff estimate for second supergeneration 
… …. 

18+ngen individual keff estimate for last supergeneration 
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Table 3.5. Contact persons and calculation control parameters

Institution
Los Alamos  

National
Laboratory 

KFKI Atomic 
Energy Research 

Institute

Japan Nuclear 
Cycle Development 

Institute

Oak Ridge National 
Laboratory 

Contact Person Avneet Sood Gabor Hordosy Nobutoshi Shirai John Wagner 

E-mail address asood@lanl.gov 
hordosy@sunserv.k

fki.hu
shirai@tokai.jnc.go

.jp
wagnerjc@ornl.gov

Voice phone  
number 

505.667.2119 
3613922222 

ext 3442 
81-29-282-1111 

(ext.71311) 
865-241-3570 

FAX phone number 505.665.3046 3613959293 81-29-282-7839 865-576-3513 

Code name MCNP4C2 MCNP4B 
SCALE-4.4

(CSAS25/KENO-
V.a)

KENO-V.a 

Code type Monte Carlo Monte Carlo Monte Carlo Monte Carlo 

Cross section 
library source 

ENDF-V and 
ENDF-VI

ENDF-B/VI,
ENDF/B-V

44groupndf5 library 
238-group library 

(ENDF/B-V) 

Starting source Uniform Uniform Flat Uniform 

Nskip 200 200 200 200 

Ngen 1 000 1 000 1 000 1 000 

nhist 100 000 100 000 100 000 100 000 

ngensh 1 No superhistory 1 1 
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Table 3.5   Contact persons and calculation control parameters (continued)

Comparison of computed results 

The computed results are summarized into Tables 3.6-3.11. The evolution of keff for a set of sample
calculations is shown in Figures 3.3-3.8.

Contact Person Dennis Mennerdahl R. N. Blomquist Yoshitaka NAITO Joachim Miss 

E-mail address 
dennis.mennerdahl

@ems.se 
RNBlomquist@anl.

gov
ynaito@nais.ne.jp 

Joachim.miss@irsn.
fr

Voice phone  
number 

+46(8)7565812 630-252-8423 81-29-270-5000 331 58 35 89 15 

FAX phone number +46(8)7565872 630-252-4500 81-29-270-5001 331 46 57 29 98 

Code name 
SCALE 4.4, 

CSASI+KENOVa
VIM MCNP4B2 MORET4A6 

Code type Monte Carlo Monte Carlo Monte Carlo Monte Carlo 

Cross section 
library 

238 group library ENDF/B-V 
ENDF-V and 

ENDF-VI
CEA93 library 

Starting source Uniform Uniform Uniform Uniform 

Nskip 200 200 200 200 

Ngen 1 000 1 000 1 000 1 000 

nhist 100 000 10 000 10 000 100 000 

ngensh 20 1 1 1

Institution
E.Mennerdahl

Systems 
Argonne National 

Laboratory 
NAIS Co. inc.  

Institut de 
Radioprotection et 
de Surete Nucleaire
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Table 3.6   Calculated keff and fission fractions for Case1_1

Table 3.6   Calculated keff and fission fractions for Case1_1 (continued)

Institution
E.Mennerdahl

Systems 
Argonne National 

Laboratory 
NAIS Co. inc.  

Institut de 
Radioprotection et 
de Sûreté Nucléaire

Case name Case1_1 Case1_1 Case1_1 Case1_1 

Final keff estimate 1.33757 1.3413 1.34226 1.34239 
Final keff estimate 

uncertainty 
0.00008 0.0003 0.0002 0.00006 

Region 1 0.0377 0.0645 4.161269E-02 4.66E-02 

Region 2 0.0409 0.0695 4.475076E-02 5.03E-02 

Region 3 0.1053 0.1768 1.134248E-01 1.263E-01 

Region 4 0.1983 0.33 2.110497E-01 2.218E-01 

Region 5 0.0848 0.0863 8.383544E-02 5.7E-02 

Region 6 0.2755 0.1397 2.590542E-01 2.484E-01 

Region 7 0.1468 0.0756 1.399368E-01 1.413E-01 

Region 8 0.0575 0.0298 5.515876E-02 5.630E-02 

Region 9 0.0532 0.0277 5.117687E-02 5.200E-02 

Region 4 9.48110E-02 1.97916E-02 2.29393E-01 2.1692E-01 

Region 5 3.58850E-02 8.31008E-02 8.30461E-02 8.3417E-02 

Region 6 3.99250E-01 2.71980E-01 2.40830E-01 2.5277E-01 

Region 7 2.15740E-01 1.46937E-01 1.29959E-01 1.3638E-01 

Region 8 8.51500E-02 5.80153E-02 5.12630E-02 5.3884E-02 

Region 9 7.88970E-02 5.38105E-02 4.75425E-02 5.0056E-02 

Institution
Los Alamos  

National
Laboratory 

KFKI Atomic 
Energy Research 

Institute

Japan Nuclear 
Cycle Development 

Institute

Oak Ridge National 
Laboratory 

Case name Case 1_1 Case 1_1 Case 1_1 Case 1_1 

Final keff estimate 1.34253 1.34264 1.34305 1.33979 
Final keff estimate 

uncertainty 
0.00006 6.00E-05 0.00008 0.00008 

Region 1 1.87550E-02 3.91486E-02 4.52776E-02 4.3021E-02 

Region 2 2.02700E-02 4.21925E-02 4.88654E-02 4.6327E-02 

Region 3 5.12460E-02 1.06899E-01 1.23826E-01 1.1722E-01 
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Table 3.7   Calculated keff and fission fractions for Case1_2

Table 3.7   Calculated keff and fission fractions for Case1_2 (continued)

Institution
E.Mennerdahl

Systems 
Argonne National 

Laboratory 
NAIS Co. inc.  

Institut de 
Radioprotection et 
de Sûreté Nucléaire

Case name Case 1_2 Case 1_2 Case 1_2 Case 1_2 

Final keff estimate 1.33746 1.341 1.34196 1.34213 
Final keff estimate 

uncertainty 
0.00008 0.0003 0.00019 0.00006 

Region 1 0.0905 0.0921 9.284588E-02 9.82E-02 

Region 2 0.0981 0.0993 9.996385E-02 1.062E-01 

Region 3 0.2528 0.252 2.522006E-01 2.666E-01 

Region 4 0.4738 0.4679 4.682112E-01 4.688E-01 

Region 5 0.0848 0.0863 8.377238E-02 5.7E-02 

Region 6 0.0000 0.0013 1.537920E-03 1.6E-03 

Region 7 0.0000 0.0007 8.300267E-04 9.0E-04 

Region 8 0.0000 0.0002 3.381075E-04 4.0E-04 

Region 9 0.0000 0.0002 3.000915E-04 3.0E-04 

Institution
Los Alamos  

National
Laboratory 

KFKI Atomic  
Energy Research 

Institute

Japan Nuclear 
Cycle Development 

Institute

Oak Ridge National 
Laboratory 

Case name Case 1_2 Case 1_2 Case 1_2 Case 1_2 

Final keff estimate 1.34223 1.34225 1.34306 1.33952 
Final keff estimate 

uncertainty 
0.00007 7.00E-05 0.00009 0.00008 

Region 1 9.19800E-02 9.26450E-02 9.26474E-02 9.2959E-02 

Region 2 9.91660E-02 9.98812E-02 9.99308E-02 1.0011E-01 

Region 3 2.51210E-01 2.52960E-01 2.52991E-01 2.5321E-01 

Region 4 4.65240E-01 4.68390E-01 4.68801E-01 4.6927E-01 

Region 5 8.35530E-02 8.33375E-02 8.28973E-02 8.3602E-02 

Region 6 4.54010E-03 1.43151E-03 1.38786E-03 4.4070E-04 

Region 7 2.45240E-03 7.67683E-04 7.61299E-04 2.3848E-04 

Region 8 9.67970E-04 3.05382E-04 3.04234E-04 9.4802E-05 

Region 9 8.94280E-04 2.81551E-04 2.76754E-04 8.8508E-05 
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Table 3.8   Calculated keff and fission fractions for Case1_3

Table 3.8   Calculated keff and fission fractions for Case1_3 (continued)

Institution
E.Mennerdahl

Systems 
Argonne National 

Laboratory 
NAIS Co. inc.  

Institut de 
Radioprotection et 
de Sûreté Nucléaire

Case name Case1_3 Case1_3 Case1_3 Case1_3 

Final keff estimate 1.33697 1.341 1.34122 1.34185 
Final keff estimate 

uncertainty 
0.00009 0.0003 0.00019 0.00006 

Region 1 0.0842 0.0762 6.693398E-02 8.48E-02 

Region 2 0.0910 0.0823 7.218831E-02 9.17E-02 

Region 3 0.2333 0.2089 1.819082E-01 2.304E-01 

Region 4 0.4391 0.3904 3.367847E-01 4.046E-01 

Region 5 0.0851 0.0865 8.428891E-02 5.72E-02 

Region 6 0.0352 0.081 1.347575E-01 6.66E-02 

Region 7 0.0189 0.0432 7.136669E-02 3.74E-02 

Region 8 0.0069 0.0163 2.682479E-02 1.42E-02 

Region 9 0.0063 0.0152 2.494691E-02 1.31E-02 

Institution
Los Alamos  

National
Laboratory 

KFKI Atomic 
Energy Research 

Institute

Japan Nuclear 
Cycle Development 

Institute

Oak Ridge National 
Laboratory 

Case name Case 1_3 Case 1_3 Case 1_3 Case 1_3 

Final keff estimate 1.34093 1.34209 1.34259 1.33911 
Final keff estimate 

uncertainty 
0.00006 6.00E-05 0.00008 0.0001 

Region 1 5.31020E-02 7.40016E-02 7.83337E-02 8.3149E-02 

Region 2 5.71060E-02 7.97469E-02 8.43914E-02 8.9610E-02 

Region 3 1.44860E-01 2.01859E-01 2.13612E-01 2.2666E-01 

Region 4 2.68510E-01 3.74426E-01 3.95437E-01 4.2021E-01 

Region 5 8.44740E-02 8.35739E-02 8.32011E-02 8.3810E-02 

Region 6 2.04310E-01 9.71287E-02 7.54691E-02 5.0521E-02 

Region 7 1.08910E-01 5.19094E-02 4.03685E-02 2.6795E-02 

Region 8 4.09380E-02 1.94226E-02 1.51782E-02 1.0020E-02 

Region 9 3.78000E-02 1.79315E-02 1.40090E-02 9.2240E-03 

47



Table 3.9   Calculated keff and fission fractions for Case2_1

Table 3.9   Calculated keff and fission fractions for Case2_1 (continued)

Institution
E.Mennerdahl

Systems 
Argonne National 

Laboratory 
NAIS Co. inc.  

Institut de 
Radioprotection et 
de Sûreté Nucléaire

Case name Case2_1 Case2_1 Case2_1 Case2_1 

Final keff estimate 1.05243 1.0569 1.05329 1.05625 
Final keff estimate 

uncertainty 
0.00006 0.0002 0.00021 0.00005 

Region 1 0.0575 0.0526 6.968193E-02 5.41E-02 

Region 2 0.0575 0.052 6.885718E-02 5.41E-02 

Region 3 0.1280 0.1123 1.487830E-01 1.179E-01 

Region 4 0.2009 0.1707 2.274839E-01 1.822E-01 

Region 5 0.2584 0.2462 2.470891E-01 2.527E-01 

Region 6 0.1349 0.1625 1.053092E-01 1.513E-01 

Region 7 0.0856 0.1057 6.865237E-02 9.79E-02 

Region 8 0.0385 0.0489 3.182848E-02 4.49E-02 

Region 9 0.0386 0.0492 3.231483E-02 4.48E-02 

Institution
Los Alamos  

National
Laboratory 

KFKI Atomic 
Energy Research 

Institute

Japan Nuclear 
Cycle Development 

Institute

Oak Ridge National 
Laboratory 

Case name Case 2_1 Case 2_1 Case 2_1 Case 2_1 

Final keff estimate 1.05324 1.05337 1.05703 1.04964 
Final keff estimate 

uncertainty 
0.00006 6.00E-05 0.00007 0.00007 

Region 1 3.01990E-02 5.09458E-02 5.05222E-02 5.0738E-02 

Region 2 2.98640E-02 5.03599E-02 5.02228E-02 5.0144E-02 

Region 3 6.43580E-02 1.08810E-01 1.09388E-01 1.0897E-01 

Region 4 9.81180E-02 1.66640E-01 1.68908E-01 1.6824E-01 

Region 5 2.45300E-01 2.46649E-01 2.48539E-01 2.4903E-01 

Region 6 2.34520E-01 1.66340E-01 1.66206E-01 1.6591E-01 

Region 7 1.53970E-01 1.08788E-01 1.07429E-01 1.0749E-01 

Region 8 7.14230E-02 5.04173E-02 4.92442E-02 4.9458E-02 

Region 9 7.22540E-02 5.10501E-02 4.95397E-02 5.0002E-02 
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Table 3.10   Calculated keff and fission fractions for Case2_2

Table 3.10   Calculated keff and fission fractions for Case2_2 (continued)

Institution
E.Mennerdahl

Systems 
Argonne National 

Laboratory 
NAIS Co. inc.  

Institut de 
Radioprotection et 
de Sûreté Nucléaire

Case name Case2_2 Case2_2 Case2_2 Case2_2 

Final keff estimate 1.05241 1.0572 1.05309 1.05634 
Final keff estimate 

uncertainty 
0.00006 0.0002 0.0002 0.00005 

Region 1 0.0959 0.1012 1.029274E-01 9.89E-02 

Region 2 0.0967 0.1004 1.013878E-01 9.90E-02 

Region 3 0.2127 0.2173 2.185235E-01 2.156E-01 

Region 4 0.3352 0.3324 3.330178E-01 3.333E-01 

Region 5 0.2595 0.2488 2.441426E-01 2.532E-01 

Region 6 0.0000 0 9.243254E-07 0 

Region 7 0.0000 0 1.410689E-08 0 

Region 8 0.0000 0 6.376319E-09 0 

Region 9 0.0000 0 2.165536E-08 0 

Institution
Los Alamos  

National
Laboratory 

KFKI Atomic 
Energy Research 

Institute

Japan Nuclear 
Cycle Development 

Institute

Oak Ridge National 
Laboratory 

Case name Case 2_2 Case 2_2 Case 2_2 Case 2_2 

Final keff estimate 1.05322 1.05342 1.05708 1.04966 
Final keff estimate 

uncertainty 
0.00006 6.00E-05 0.00006 0.00006 

Region 1 1.02380E-01 1.01969E-01 1.00301E-01 1.0055E-01 

Region 2 1.01030E-01 1.00698E-01 9.96651E-02 9.9501E-02 

Region 3 2.18000E-01 2.17456E-01 2.16940E-01 2.1633E-01 

Region 4 3.32620E-01 3.32619E-01 3.34826E-01 3.3431E-01 

Region 5 2.45970E-01 2.47258E-01 2.48262E-01 2.4932E-01 

Region 6 3.30730E-06 9.33218E-08 1.67640E-06 9.9133E-07 

Region 7 1.40840E-06 0.0 8.46239E-07 1.9887E-07 

Region 8 7.94680E-07 0.0 3.15369E-07 1.1715E-07 

Region 9 7.66240E-07 0.0 3.52256E-07 1.4242E-07 

49



Table 3.11   Calculated keff and fission fractions for Case2_3

Table 3.11   Calculated keff and fission fractions for Case2_3 (continued)

Institution
E.Mennerdahl

Systems 
Argonne National 

Laboratory 
NAIS Co. inc.  

Institut de 
Radioprotection et 
de Sûreté Nucléaire

Case name Case2_3 Case2_3 Case2_3 Case2_3 

Final keff estimate 1.05203 1.0565 1.05345 1.05615 
Final keff estimate 

uncertainty 
0.00009 0.0002 0.0002 0.00005 

Region 1 0.0955 0.0967 9.962111E-02 9.59E-02 

Region 2 0.0954 0.0959 9.860388E-02 9.59E-02 

Region 3 0.2121 0.2066 2.128503E-01 2.091E-01 

Region 4 0.3348 0.3159 3.249325E-01 3.226E-01 

Region 5 0.2604 0.2501 2.465805E-01 2.533E-01 

Region 6 0.0008 0.0162 8.088689E-03 1.09E-02 

Region 7 0.0005 0.01 5.034129E-03 6.7E-03 

Region 8 0.0002 0.0042 2.103446E-03 2.8E-03 

Region 9 0.0002 0.0044 2.185480E-03 2.9E-03 

Institution
Los Alamos  

National
Laboratory 

KFKI Atomic 
Energy Research 

Institute

Japan Nuclear 
Cycle Development 

Institute

Oak Ridge National 
Laboratory 

Case name Case 2_3 Case 2_3 Case 2_3 Case 2_3 

Final keff estimate 1.05271 1.05302 1.05682 1.04933 
Final keff estimate 

uncertainty 
0.00007 6.00E-05 0.00007 0.00009 

Region 1 9.43440E-02 9.80849E-02 9.69295E-02 9.7116E-02 

Region 2 9.31170E-02 9.69766E-02 9.63163E-02 9.5978E-02 

Region 3 2.00960E-01 2.09717E-01 2.09943E-01 2.0888E-01 

Region 4 3.06750E-01 3.20376E-01 3.24437E-01 3.2352E-01 

Region 5 2.47680E-01 2.47161E-01 2.49158E-01 2.5053E-01 

Region 6 2.64740E-02 1.27958E-02 1.08240E-02 1.1150E-02 

Region 7 1.65290E-02 8.01550E-03 6.66963E-03 6.9006E-03 

Region 8 6.92930E-03 3.37759E-03 2.81745E-03 2.9185E-03 

Region 9 7.21060E-03 3.49509E-03 2.90325E-03 3.0062E-03 
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Figure 3.3   The skip cycles effect on the values of Keff and standard deviations
obtained from 1 000 active cycles for Case1_1

Figure 3.4   The skip cycles effect on the values of Keff and standard deviations
obtained from 1 000 active cycles for Case1_2
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Figure 3.5   The skip cycles effect on the values of Keff and standard deviations
obtained from 1 000 active cycles for Case1_3

Figure 3.6   The skip cycles effect on the values of Keff and standard deviations
obtained from 1 000 active cycles for Case2_1
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Figure 3.7   The skip cycles effect on the values of Keff and standard deviations
obtained from 1 000 active cycles for Case2_2

Figure 3.8   The skip cycles effect on the values of Keff and standard deviations
obtained from 1 000 active cycles for Case2_3
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Conclusions

Test problems No.2 were calculated with several Monte Carlo codes, that is, MCNP, KENO, VIM
and MORET. The final keff’s computed with each code show similar values. The differences probably
stem from the cross section libraries used by the various codes. The calculation control parameters
proposed by the problem coordinator, i.e. the number of generations skipped before beginning tallies,
the number of generations tallied, and the number of histories per generation, require time-consuming
computation.

In cases 1_1 and 2_1, axial material distributions are symmetrical, so that axial fission fraction
distribution should appear symmetrical. The fission fractions calculated with MCNP by LANL and
NAIS, appear to deviate from a symmetrical distribution. KENO calculations by JNC and EMS show
symmetrical fission fraction distributions in these cases. The multiplication factor for these cases
should decrease in the order of cases 1_1, 1_3, and 1_2,on physical grounds. keff results from ORNL
and NAIS do show 1_3 smaller than case 1_2. The values of k(1_3) and k(1_2) are 1.33911±0.0001
and 1.33952±0.00008 (ORNL), and 1.34122±0.00019 and 1.34196±0.00019 (NAIS). This inversion
seems to come from an error in the source distribution, that is, the source of the bottom part in case 1_3
is estimated to be larger than the final values. In case 1_2, the reactivity of the bottom part is so small
that source in that part soon becomes small through the effects of generation cycles. However, in
case 1_3, the reactivity of the bottom part is not as small, so that many more cycles are necessary to
decrease the source to the same level. This means that to obtain the final source distribution in such a
case as 1_3, where the core configuration is slightly asymmetrical, requires a larger number of
generation cycles, which is evident by the results shown in Figure 3.3. 

Discussion

In our test specifications, the number of skip cycles is given by the problem coordinator. When
convergence is slow, it is very important to determine the number of skip cycles for Monte Carlo
calculations. One basic assumption that is made for good criticality calculations is that the fundamental
spatial mode for the fission source is achieved during the inactive cycles. In other words, the neutron
source distribution has essentially reached stability after enough inactive cycles have been skipped. 

To obtain a reasonable number of skip cycles, we have tried an idea as follows. For example, we
take average of keff values over 10 cycles, i.e., one batch of 10 keff cycles with 10000 particles per
cycles. Then the difference between adjacent keff’s is scanned over the series of 50 batches. When the
keff differences (AVSQ(n)) curve falls within the limits –1.0E-3 to 1.0E-03, “stability” is assumed to be
reached. By this method, a reasonable skip number is expected to be obtained. Here, we define 

and

The AVSQ(n) value obtained from above equation is shown in Figure 3.9(a) for case 2_3.The
relative keff difference, AVSQ, falls within limits ±1.0E-03 after 100 start cycle, where keff’s are
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averaged over adjacent 10 cycles. However, from Figure 3.9(b-c), we note that, because of the low
speed of convergence by cycles, the keff still remains far from the approximate final keff 1.05345, as
shown in Table 3.11. 

Figure 3.9(a)   Relative Keff difference obtained from each batch of 10 keff

cycles for Case2_3

Figure3.9(b)   The Keff and standard deviation of each batch for Case2_3
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Figure 3.9(c)   The Keff and standard deviation of each batch for Case2_3

As shown above, it is not so easy to determine whether the source iteration has converged or not.
When analyzing systems such as these, it is important to: (a) find a method to determine source
iteration convergence, and (b) obtain the necessary number of skip cycles. We know the final keff’s of
the test problems through time-consuming computation; we would like to obtain these keff’s in a shorter
computing time.
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Chapter 4

LOOSELY COUPLED URANYL NITRATE SOLUTION SLABS: TEST PROBLEM 3

Yoshinori Miyoshi, Toshihiro Yamamoto
Japan Atomic Energy Research Institute

Overview

Two fissile units (Unit 1 and Unit 2) are separated by a slab of water. The fuel is 10 wt.% enriched
uranyl nitrate aqueous solution [1]. The uranium concentration is 300 gU/L, and the nitric acid molarity
is 1.0 mol/L. The thickness of unit 2 is fixed at 20 cm. The thicknesses of unit 1 are varied, as are the
water thicknesses. 

Specifications

Material

The material compositions are shown in Table 4.1.

Table 4.1   Material specifications (at/b-cm)

Geometry

Figure 4.1 describes the problem geometry. Unit 1 and unit 2 have the same composition (see table
above), the difference between fissile units being the thickness. Table 4.2 gives the thicknesses for the
studied cases.

Uranyl Solution
H 5.9347E-02
N 2.1220E-03
O 3.7258E-02

235U 7.6864E-05
238U 6.8303E-04

Water
H 6.6658E-02
O 3.3329E-02
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Figure 4.1   Problem geometry

Cases

Table 4.2   Dimension specifications of cases (cm)

Calculational parameters

� 2 000 neutrons per generation;

� 50 skip generations;

Case Unit # 
Water
Gap

 1 2  

1 20 20 30 

2 18  20 30 

3 15 20 30 

4 12 20 30 

5 20 20 20 

6 18 20 20 

7 15 20 20 

8 12 20 20 

9 20 20 10 

10 18 20 10 

11 15 20 10 

12 12 20 10 

V
ac

uu
m

variable variable

Reflective

Reflective

V
ac

uu
m

Fuel 1 Fuel 2 Water

20 cm
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� 550 active generations;

� flat initial source;

Required output

In addition to identifying information, the participants were asked to submit the information
specified in Table 4.3.

Table 4.3   Information to report

Cumulative fission fractions ff(i,g) in fissionable region i in generation g is also an important
output. As all computer codes do not have the capability of printing this information for any generation,
participants may choose between the following alternatives.

1) Fission fractions are given as average over all generations

2) Fission fractions are given as average over all active generations

3) Fission fractions are given at different generation sequences

Results

Six organizations took part and four Monte Carlo codes, VIM, MCNP, MORET and KENO-V.a
with 27-group ENDF/B-IV or 238-group ENDF-B/V cross sections in SCALE 4.4, were applied. A
deterministic method with XSDRNPM in SCALE 4.4 was also applied for comparison of the results.
All Monte Carlo codes used conventional power iteration methods except for a super history technique
in MORET. 

To investigate a coupling intensity among array of units, it is proposed in this problem that
coupling coefficients be introduced. The coupling coefficient Pij is defined as the expectation value that
a fission neutron in unit i gives rise to a next generation fission neutron in unit j. A coupling coefficient
matrix is defined for two unit array system as 

Line Required information 
12 Starting source  
13 nskip = number of generations skipped before 

beginning tallies or before convergence: 
14 ngen = number of generations tallied 
15 nhist = number of histories per generation 
16 ngensh = number of generations per superhistory 
17 final keff estimate 
18 final keff estimate uncertainty (one standard 

deviation)
19 keff estimate for first supergeneration 
20 individual keff estimate for second 

supergeneration
18+ngen individual keff estimate for last supergeneration 

59



(1)

S1 and S2 are fission sources in units 1 and 2, respectively. These coupling coefficients can be
obtained by Monte Carlo method such as KENO and MCNP. KENO has a capability to give coupling
coefficients after a criticality calculation by invoking a relevant code option. KENO, however, only has
a capability to give the standard deviations for the largest coupling coefficients. MCNP is capable of
calculating coupling coefficients and their standard deviations by storing a fission source distribution
obtained by a criticality calculation. 

Equation (1) has two eigenvalues. The larger one, k0, is the eigenvalue for a fundamental mode
and the smaller one, k1, is for the first harmonic. The elements of the fission probability matrix are
calculated for a fundamental mode flux distribution. Thus, the first harmonic is significant if a neutron
interaction between the units 1 and 2 does not affect the fission source distribution in each unit. As the
thickness of the interstitial water decreases, the k1 obtained by the eigenvalue matrix equation becomes
incorrect. The ratio k1/k0 (i.e., dominance ratio) of a symmetric weak interaction system such as Case 1
is close to unity. When the dominance ratio is close to unity, the decay of higher-harmonics during the
source iteration process is very slow. If a statistical fluctuation is not negligible compared with 1-k1/k0,
it is difficult to reach a converged fission source distribution. In other words, the statistical uncertainty
of k1/k0 comparable to k1/k0 makes the convergence of the system difficult. Using the coupling
coefficient matrix, it is possible to discuss the fission convergence problem quantitatively. 

Tables 4.4, 4.5 and 4.6, show the coupling coefficients and matrix eigenvalues for all 12 cases.
These results were calculated by MCNP 4B. In case 1 (30 cm water separator), the coupling
coefficients P12 (or P21) between the units 1 and 2 are approximately 0.0012, and two units are almost
isolated, while the self-coupling coefficient of the unit 1, P11 (or P22), is 0.935. Thus, the keff of the
system was mostly dominated by a single unit, regardless of the fission source distribution. This means
that, even if all neutrons are started in one of the units and the chain reaction never reaches the other
unit, the keff would be substantially correct. 

Although the converged fission source ratio between the two symmetrical units is supposed to be
unity, it was as large as 5 in an MCNP calculation during the iterations of generation as shown in 
Figure 4.2. On the other hand, a thinner water layer makes the fission source more stable, also shown
in Figure 4.2 The frequency distribution of the fission source fraction in the unit 1, which was obtained
by 50 replica calculations, is shown in Figure 4.3. The distribution exhibits large variations from 0.2 to
0.8 as compared to the exact solution of 0.5. Due to the weak interaction between the units, each unit
behaves independently of the other unit. The broadening of the fission fraction ratio distribution can be
reduced by decreasing the standard deviations of P11 and P22, easily done by increasing the neutrons
per generation (based on the central limit theorem). It has already been demonstrated [1] that an
anomalous fission source distribution in a symmetrical array system does not affect the system keff.
Figure 4.4 shows a fission source ratio transition with an increased number of neutrons per generation.
With 10 000 neutrons per generation, the fission source ratio in each generation is largely improved.
The discussion on the increased number of neutrons per generation for KENO V.a is presented in
Appendix 4.a. 
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Table 4.4   Coupling coefficients for 30 cm thickness water

Table 4.5   Coupling coefficients for 20 cm thickness water

Table 4.6   Coupling coefficients for 10 cm thickness water

 Coupling coefficients Matrix eigenvalue 

Case P11 P12 P21 P22 k0 k1

9
0.9313 

±0.0017 
0.0436 

±0.00037 
0.0441 

±0.00037 
0.9329 

±0.0017 
0.9760 

±0.0012 
0.8882 

±0.0012 

10
0.8878 

±0.0019 
0.0494 

±0.00045 
0.0424 

±0.00035 
0.9322 

±0.0013 
0.9609 

±0.0013 
0.8590 

±0.0013 

11
0.8099 

±0.0025 
0.0619 

±0.00066 
0.0403 

±0.00033 
0.9365 

±0.0012 
0.9538 

±0.0018 
0.7926 

±0.0018 

12
0.7025 

±0.0030 
0.0730 

±0.00091 
0.0381 

±0.00032 
0.9326 

±0.0012 
0.9441 

±0.0022 
0.6909 

±0.0022 

 Coupling coefficients Matrix eigenvalue 

Case P11 P12 P21 P22 k0 k1

5
0.9342 

±0.0017 
0.0065 

±0.00015 
0.0064 

±0.00013 
0.9355 

±0.0016 
0.9413 

±0.0012 
0.9284 

±0.0012 

6
0.8884 

±0.0038 
0.0079 

±0.00034 
0.0066 

±0.00011 
0.9370 

±0.0011 
0.9380 

±0.0028 
0.8874 

±0.0028 

7
0.8078 

±0.0055 
0.0082 

±0.00055 
0.0061 

±0.00009 
0.9329 

±0.0010 
0.9333 

±0.0039 
0.8074 

±0.0039 

8
0.7049 

±0.0071 
0.0112 

±0.00083 
0.0059 

±0.00009 
0.9339 

±0.0010 
0.9342 

±0.0051 
0.7046 

±0.0051 

±0.0130 ±0.00068 ±0.00004 ±0.0009 ±0.0092 ±0.0092 

4
0.6956 

±0.0156 
0.0017 

±0.00068 
0.0010 

±0.00004 
0.9338 

±0.0009 
0.9338 

±0.0111 
0.6955 

±0.0111 

Coupling coefficients Matrix eigenvalue 

Case P11 P12 P21 P22 k0 k1

1
0.9354 

±0.0017 
0.0012 

±0.00006 
0.0011 

±0.00006 
0.9362 

±0.0020 
0.9370 

±0.0014 
0.9346 

±0.0014 

2
0.8903 

±0.0094 
0.0008 

±0.00026 
0.0012 

±0.00004 
0.9336 

±0.0010 
0.9336 

±0.0067 
0.8903 

±0.0067 

3 0.8105 0.0021 0.0012 0.9339 0.9339 0.8105 
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Figure 4.2   Fission source ratios of Cases 1, 5 and 9

Figure 4.3   Frequency distribution of S1/(S1+S2) of Case 1
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Figure 4.4   Fission source ratios with different neutrons per generation in Case 1

Slight asymmetry in a weakly coupling fissile array (Case 2) makes a large difference in fission
source allocation. The smaller unit contributes little to keff of the array system in this situation since the
keff is dominated by the larger unit. The fission source ratios in the Cases 2, 3, 4 are stable during the
generations due to the asymmetry in spite of the weak neutron interaction. The dominance ratio k1/k0 of
case 2 is 0.95 and this ratio is significantly smaller than unity. Figure 4.5 shows a fission source ratio
S2/S1 transition for Case 2, and the fission source is found to show a relatively stable convergence
around 50. Occasionally, large deviations of the S2/S1 occur due to the small number of fission source
sites in unit 1.

Figure 4.5   Fission source ratio of Case 2
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As the thickness of the water slab is reduced, the neutron interaction between the units becomes
larger and the fission source distribution during the generations becomes more stable even in a
symmetric system. Take, for example, in Case 9 (10 cm water separator), P12=P21=0.044. This
symmetric system has a dominance ratio that is much smaller than in case 1, and has a sufficient
restoring force to make the fission source allocation the appropriate one. The fission source ratio S2/S1
averaged over the whole generations in Case 9 is approximately 0.96, which is much better than in
case 1.

Figure 4.6 shows the number of fission neutrons in both units of Case 4 when the number of
neutrons per generation was only 100 and they were all started in the less reactive unit 1 at the first
generation. This figure shows that the more reactive unit was sampled after the fourth generation.
Despite the larger interstitial water thickness and the small number of neutrons per generation, we did
not encounter a phenomenon of so-called “lost unit”. As the number of neutrons increases, the
probability of “lost unit” decreases. Thus, MCNP and other Monte Carlo codes using the same
algorithm of fission source site determination hardly have an opportunity to have a “lost unit” during
the criticality calculations.

Figure 4.6   Fission neutron distribution of Case 4 when all neutrons start
in the less reactive unit

Comparison among several Monte Carlo Codes

Participants and the codes used are given in Table 4.7. Table 4.8 shows that the fission source
ratios, S2/S1, obtained by one million history criticality calculations (2 000 neutrons per generation and
500 generations) of several Monte Carlo codes. For comparison, the results of a deterministic code
XSDRNPM are given as well. XSDRNPM used the 44-group cross-sections. The results of Monte
Carlo codes are from only one replica calculation. Note that the ratios in symmetric weakly coupled
cases (i.e., cases 1 and 5) may change drastically around unity by using different random number
sequences.

0

20

40

60

80

100

120

140

0 10 20 30 40 50

generation

N
um

be
r 

of
 f

is
si

on
 n

eu
tr

on
s

Unit 1

Unit 2

64



Table 4.7   List of participants and calculation tools

Table 4.8   Fission source ratio S2/S1 by one million history calculations

*Conventional method of MORET.
**Super history technique with 10 generations per superhistory stage.

The fission source ratios S2/S1 by XSDRNPM seem to agree with Monte Carlo. It is suggested that
a deterministic code does not always give a true fission source distribution for a weakly coupled
systems. The fission source ratio by a deterministic method is very sensitive to the mesh size especially
for a weak interaction system. More studies are needed to discuss the fission source convergence of
deterministic codes on these test problems. 

In the VIM calculations, two algorithms for source site determination (collision-based and
absorption-based) were tried [2]. The collision-based algorithm was the original technique used in
VIM, which now uses absorptions. Relatively good agreement in the fission source ratios among
several codes were found except in the VIM collision-based algorithm result for Case 1. Judging from
the standard deviations of S2/S1, the VIM absorption-based algorithm is the best among the codes in
Table 4.8, and KENO is a little better than MCNP. Figure 4.7 shows the fission source ratio fluctuations
for case 1 obtained by both VIM algorithms and MCNP. Extreme deviations from 1.0 were found in
the VIM collision-based results. MCNP uses a collision-based algorithm similar to that used in VIM,
except the number of particles is not fixed. It is the product of the number of starting particles per

Unit Water S2/S1

1 2 (cm) 
XSDR
NPM

MORET MCNP KENO VIM VIM Case

cm cm  44Gr. C.M*
S.H
**

 238Gr 27Gr collision 
absorp

tion
1 20 20 30 1.00 0.93 0.96 1.9 1.3 1.2 5.1 0.94 
2 18 20 30 34 47 33 52 31 28 35 35 
3 15 20 30 110 132 101 111 110 107 99 99 
4 12 20 30 219 203 217 196 226 219 226 200 
5 20 20 20 1.00 1.02 1.08 0.82 0.91 0.86 0.83 1.12 
6 18 20 20 7.1 7.3 7.3 8.1 7.3 7.6 7.5 6.6 
7 15 20 20 21 20 20 20 21 20 21 21 
8 12 20 20 40 36 38 40 40 39 42 39 
9 20 20 10 1.00 1.04 0.98 0.96 0.99 1.07 1.03 1.04 

10 18 20 10 1.7 1.7 1.7 1.8 1.7 1.8 1.7 1.7 
11 15 20 10 3.5 3.4 3.4 3.5 3.6 3.7 3.6 3.5 
12 12 20 10 6.3 6.1 6.0 6.4 6.3 6.3 6.4 6.4 

Name Code Cross-section library 
R.Blomquist VIM ENDF/B-V 

J.Wagner KENO V.a 238Gr. ENDF/B-V 
D.Mennerdahl KENO V.a & XSDRNPM 238Gr. ENDF/B-V 

N.Shirai KENO V.a 27Gr. ENDF/B-IV 
J.Miss, O.Jacquet MORET4 172Gr. CEA93 JEF2.2 

R.Little MCNP 4C ENDF/B-VI 
T.Yamamoto MCNP 4B JENDL-3.2 
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generation and the particle weight that is fixed throughout the generations. On the other hand, the result
by the VIM absorption-based algorithm is better than its collision-based algorithm and MCNP. The
collision-based algorithm used for the generation of source sites would increase the magnitude of
fluctuations in the fission source distribution caused by the variability in the number of collisions per
particle [2]. This is especially true in homogeneous media where the fissionable material is mixed with
other materials as in this test problem. 

Figure 4.7   Fission source ratio of case 1 by MCNP and VIM

Table 4.9 shows the coupling coefficients calculated by KENO V.a and 27 group ENDF/B-IV.
These coupling coefficients are almost comparable to those obtained by MCNP. There seem also to be
no conspicuous differences in the fission source convergence between KENO and MCNP. Figure 4.8
shows the calculated keff’s by different codes. It can be seen from this figure that the calculations were
carried out correctly. The overestimations of MCNP are caused by the library JENDL-3.2, which gives
higher keff’s for homogeneous enriched uranium solution systems. 
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Table 4.9   Fission probability matrix elements by KENO V.a

Figure 4.8   Calculated keff’s

MORET used three techniques to determine the fission source sites: the conventional power
method, stratified source sampling, and the superhistory method. The fission fractions of unit 1 for case
1 obtained by eleven replica calculations using the three techniques are shown in Figure 4.9. In the
superhistory technique, 10 generations correspond to one superhistory stage. The fluctuation of the
fission fraction through the replica calculations is the smallest with the superhistory technique. The
stratified source sampling technique may not be superior to the conventional method. This is to be
expected because neither unit is likely to be lost in this test problem. 
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Case Fission probability matrix Eigenvector ratio 

 P11 P12 P21 P22 S2/S1

1 0.930 0.0013 0.0012 0.930 1.14 

2 0.884 0.0011 0.0012 0.929 36.8 

3 0.805 0.0019 0.0011 0.931 109 

4 0.690 0.0015 0.0010 0.930 227 

5 0.930 0.0063 0.0063 0.928 0.87 

6 0.884 0.0074 0.0062 0.930 7.50 

7 0.806 0.0087 0.0060 0.930 20.7 

8 0.704 0.0105 0.0056 0.929 39.7 

9 0.926 0.0433 0.0432 0.927 1.01 

10 0.884 0.0492 0.0415 0.929 1.76 

11 0.803 0.0607 0.0398 0.930 3.61 

12 0.704 0.0713 0.0376 0.929 6.29 
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Figure 4.9   Fission fraction of Unit 1 by three techniques of MORET

Conclusions 

Calculating coupling coefficients among fissile array of units is very powerful tool for discussing
the problem of fission source convergence. By solving a matrix eigenvalue equation, we can easily
compute the largest and the second-largest eigenvalues, and the ratio of the two eigenvalues
(dominance ratio). 

No units were “lost” even with 30 cm thickness water and 100 neutrons per generation. 

While the VIM collision-based algorithm seems not to be suitable for Case 1 of this test problem,
the absorption-based algorithm is expected to reduce fission source fluctuations in a symmetric, weakly
interacting system.

The superhistory algorithm can improve the fission source convergence of this test problem,
having an effect similar to increasing the number of neutrons per generation. 
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Appendix 4.a

To confirm the report results in Figure 4.4, a similar study of 50 replicas for case 1 was made,
using KENOVa and given statistical specifications: 2 000 neutrons per generations (NPG), 500 active
generations and 50 skipped generations. In a second series of calculations, the specifications were
changed to 20 000 neutrons per generations, 50 active generations and 5 skipped generations. This
means identical numbers of active and skipped neutrons. The results are given in Figure 4.a.1 below.
The standard deviations for keff were similar while those for S1 and S2 were lower. A significant
improvement is obtained when the number of neutrons per generation is increased. However,
depending on for what purpose the S2/S1 ratios are generated, the statistical model could be improved
further. More generations for a 2 000 NPG case were attempted (up to 11 000 active generations) and
improved the results, but only very slowly. The Expert Group should study the optimization of statistics
further.

Figure 4.a.1   Effect of generation size on source fluctuations (Case 1)
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Chapter 5

ARRAY OF INTERACTING SPHERES: TEST PROBLEM 4

By Olivier Jacquet and Joachim Miss (IRSN, France)

Overview

Test problem 4 is an unreflected 5 x 5 x 1 array of metal spheres in air in which the initial source
is chosen to be far from the converged source distribution. The greatest part of the neutrons is placed
in one of the least reactive units. Moreover, an insufficient number of histories per cycle (125) is
intentionally chosen to amplify the effects of under-sampling. In those conditions, the source
convergence process requires a large number of cycles before the most reactive unit is correctly
sampled. As the number of cycles is intentionally limited to 1 000 (with 0 cycle skipped), 1 200 (with
200 cycles skipped) or 1 400 (with 400 cycles skipped), the final keff (cumulative over the active cycles)
may be underestimated for two reasons:

1) Either the source convergence has not been achieved, i.e. the most reactive unit is still under-
sampled at the end of the simulation; in the worst case, the most reactive unit may be deserted and
may stayed unvisited, leading to a wrong convergence.

2) Either the source convergence has been achieved and the number of initial cycles skipped is not
sufficient.

3) The test problem aims at testing the robustness of the criticality codes to converge to the correct
distribution of sources when the initial guess is not realistic.

Specifications

Geometry

The test problem geometry is shown in Figure 5.1.

Figure 5.1
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A lattice of 5 x 5 x 1 highly enriched uranium metal spheres separated by air is considered. The
center-to-center distance between spheres is 80 cm. All the spheres have the same composition (see
Table 5.1 Fuel and air compositions (in atoms/barn-cm)). The radius of the central sphere is 10 cm and
the radius of the other spheres is 8.71 cm. Table 5.2. Specification of replica calculations. The spheres
are numbered as in a conventional matrix, so that the lowest left-hand sphere in the figure below is in
position (1,1) and the top right-hand sphere is in position (5,5). The test is a modified version of the
configuration studied by Kadotani et al. [1].

Material

Table 5.1   Fuel and air compositions (in atoms/barn-cm)

Required calculations

Calculations were to be performed using 125 histories per cycle, 1000 active cycles and the
following source distribution:

� 101 neutrons in the centre of sphere (1,1),

� 1 neutron in the centre of each of the other 24 spheres.

100 replicas were to be run, (using different random number sequences) for three numbers of
passive cycles (preceding the 1 000 active generations): 0, 200 and 400, leading to a total number of
300 calculations.

Table 5.2   Specification of replica calculations

Case Random number
sequence Skipped Cycles

1 #1 0
2 #1 200
3 #1 400
4 #2 0
5 #2 200
6 #2 400
... ... ...

298 #100 0
299 #100 200
300 #100 400

High enriched uranium metal:
235U 4.549E-02
238U 2.560E-03 

Air
N 4.3250E-5
O 1.0810E-5
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Moreover a reference calculation was to be run with adequate source convergence and statistical
accuracy.

In addition to identifying information, the participants were asked to submit the information
specified in Table 2.3.

For each of the 300 cases

� the final keff estimate (cumulative over the active cycles, i.e. 1000 active generations) and its
standard deviation

� the keff estimate of each single active cycle (as much values as the number of cycles: 1000
values if the number of generation per cycle is equal to 1, and less if the number of generation
per cycle is greater than 1)

� the final fission fractions (cumulative over the active cycles, i.e. 1000 active generations), and
their standard deviation, of only 3 spheres:

– sphere (1,1): where the majority of neutrons are emitted at first generation

– sphere (3,3): the central sphere

– sphere (5,5): to compare with the fission fraction of sphere (1,1)

� the results of the convergence tests performed by the code

For the reference calculation

� the description of the calculation (strategy used, number of passive stages, number of active
stages, number of generations per stage, number of neutrons per generation...)

� the final keff estimate and its standard deviation

� the final fission fractions (with their standard deviation) of the 3 spheres: (1,1), (3,3) and (5,5).

� the results of the convergence tests performed by the code

Submission format

In addition to identifying information, the participants were asked to submit the information
specified in Table 5.3 for each of the 300 cases. Additional information about the algorithms and
methods used in the codes, e.g., survival biasing, was requested.
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Table 5.3   Information to report

Results

Table 5.4   Contributors, codes, and libraries

* CONSYST is a code for cross-section preparation developed at IPPE [2].

All the contributors used a conventional strategy (no superhistory method, no use of the fission
matrix method, and no stratified sampling). All the simulations consisted of 1 000 active cycles 
(1 generation per cycle) with a variable number of inactive cycles preceding the active cycles. Each
contributor ran 100 replicas with 0 inactive cycle, 100 replicas with 200 inactive cycles and 
100 replicas with 400 inactive cycles.

Group Contributor Code Cross-sections Library
ANL Roger Blomquist VIM ENDF/B-V continuous library 
EMS Dennis Mennerdahl SCALE-4.4 (CSASI/KENO-V.a) 238-group based on ENDF/B-V 

continuous library 
IPPE Alexander Blyskavka 

and Tatiana Ivanova  
CONSYST* / SCALE-4.3 (KENO-
V.a)

299-group ABBN-93 based on 
FOND-2.2 continuous library 

IRSN Joachim Miss MORET 4.A.6 16-group Hansen & Roach 
JNC Nobutoshi Shirai SCALE-4.4 (CSAS25/KENO-V.a) 27-group based on ENDF/B-IV 

continuous library 
LANL Robert Little MCNP4C2 ENDF/B-VI continuous library 
ORNL John Wagner SCALE-4.4a (CSAS25/KENO-V.a) 238-group based on ENDF/B-V 

continuous library 

16 ngenst = number of generations per stage 
17 final keff estimate 
18 final keff estimate uncertainty (one standard deviation) 
19 individual keff estimate at first stage 
20 individual keff estimate at second stage (not cumulative) 
...

18+nstage individual keff estimate at last stage (not cumulative) 
18+nstage+1 final fission fraction of sphere (1,1) 
18+nstage+2 standard deviation of final fission fraction of sphere (1,1)  
18+nstage+3 final fission fraction of sphere (3,3) 
18+nstage+4 standard deviation of final fission fraction of sphere (3,3) 
18+nstage+5 final fission fraction of sphere (5,5) 
18+nstage+6 standard deviation of final fission fraction of sphere (5,5) 
18+nstage+7 results of convergence tests (as many lines as necessary) 

...

Line Number Required information 
12 Starting source 
13 nskip = number of stages skipped before beginning tallies 
14 nstage = number of stages tallied 
15 nhist = number of histories per generation 
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Sample input files are grouped in Appendix 5.a. Comments of some of the contributors are
grouped in Appendix 5.b.

Review of Codes

The main features of the codes used by the contributors on this specific test are summed up in the
Tables 5.5 and 5.6. The options of the codes that were not used are not mentioned.

Table 5.5   Main features of the codes

 KENO MCNP MORET VIM
neutrons can 
survive
absorption

yes 
neutron weight 
adjusted at each 
collision by a non-
absorption factor and 
checked against a 
weight high value to 
see if the particle 
should be split, and 
against a weight low 
value (0.333) to see 
if Russian roulette 
should be played 

yes 
neutron weight 
adjusted at each 
collision by a non-
absorption factor and 
checked against a 
low value (0.25) to 
see if Russian 
roulette should be 
played 

no no 

cycle keff

estimator (1) 
source-collision source-collision balance-track-length source-track-length 

final keff

estimator (1) 
(average of 
cycle keff

estimates) 

collision estimator combination of 3 keff

estimators: 
source-collision 
source-track-length 
source-absorption 

general combination 
[3] of 5 keff

estimators: 
source (collision, 
track-length,
absorption),
balance (collision, 
track-length)
and 2 control 
variables:
neutron balance (1) 
estimated with 
collision estimator 
and track-length 
estimator 

combination of 2 keff

estimators: 
source-track-length 
and source-
absorption

final fission 
fraction
estimator 

collision track-length track-length track-length 
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Table 5.5   Main features of the codes (continued)

(1) 2 kinds of keff estimator are used:
– source: keff = fission production / source
– balance: keff = fission production / neutron balance
Neutron balance is defined as (absorption + leakage – excess). Its expected value is the total source
weight.

The balance estimators are only used in MORET.

 combined estimator 
uses correlation 
between different 
estimators at each 
cycle 

no correlation 
assumed between 
cycles 

combined estimator 
uses correlation 
between different 
estimators at each 
cycle 

final keff

standard
deviation
estimator 

SCALE-4.3: no 
batching
SCALE-4.4: batch 
estimate, described 
by Gelbard and 
Prael [4], batch size 
selected to maximum 
the standard 
deviation estimate 

no batching no batching no batching 

no correlation 
assumed 

no correlation 
assumed 

no correlation 
assumed 

no correlation 
assumed 

final fission 
fraction
standard
deviation
estimator 

no batching no batching no batching batching (10 cycles 
= 1 batch) 

data presented for 
the user to aid in 
making such a 
decision

cumulative keffs
printed, as are keffs
when more early 
generations are 
skipped

cumulative keffs
printed

cumulative keffs
printed, as are keffs
when more early 
generations are 
skipped

convergence
tests

normality of the 
cycle keff distribution 
tested using a chi-
square test

comparison of first 
half and second half 
means of active 
cycle keff

normality test 

normality of the 
cycle keff distribution 
tested using a chi-
square test (for each 
keff estimator) 

comparison of first 
half and second half 
means of active 
cycle keff (for each 
keff estimator: 
analog, track length, 
collision)
if difference > 
2 sigma, the test is 
failed

 report of fissionable 
regions which had 
no fission sites 

report of fissionable 
regions which had 
no fission sites 

KENO MCNP MORET VIM
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Table 5.6   Source distribution estimation in the different codes

 KENO MCNP MORET 
conventional strategy 

VIM 

event at 
which sites 
are created 

collision collision collision absorption 

number of 
sites created 

n = INT(Ws(i)+ξ) 

( ) υΣ
=
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i

f
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k t

W i W
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Wi: neutron weight 
rk: reduced value of 
k, constant 
ξ: random number 

n = INT(Ws(i)+ξ) 
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Wi: neutron weight 
k: constant 
ξ: random number 

n = 1 n = INT(Ws(i)+ξ) 
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Wi: neutron weight 
k: constant 
ξ: random number 

sites weight 1 ( )sW i n  ( ) νΣ
=
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Wi: neutron weight 

1 

starters 
number 

constant number M0 constant total weight 
M0 

constant total weight 
M0 

constant number M0 

starters 
sampling 
algorithm 

if more than M0 
sites, 
site bank sampled 
without replacement 
for M0 starters 
(sites may be used 
more than once) 
if exactly M0 sites, 
each site used once 
if less than M0 sites, 
all sites used, and 
starters randomly 
sampled without 
replacement to get 
the rest of the starters 

all the sites are used respects the 
proportion PV  of 
fission in each 
volume V 

( )
( )=

∑
∑

s
collisions in V

v 0
s

all collisisons

W i
P M

W i

=V VM NINT(P )  
MV starters in 
volume V sampled 
from the sites in 
volume V, the 
probability to pick a 
site is proportional to 
its weight (sites may 
be used more than 
once) 

if more than M0 
sites, 
site bank sampled 
without replacement 
for M0 starters 
(sites may be used 
more than once) 
if exactly M0 sites, 
each site used once 
if less than M0 sites, 
all sites used, and 
starters randomly 
sampled without 
replacement to get 
the rest of the starters 

starters 
weight 

1 ( )
( )∑

s
0

s
sites

W i n
M

W i n
 if MV differs from 0, 

all starters in volume 
V have the weight 

V

V

P
M  
the weights of all 
starters are multiplied 
by the same 
correction factor so 
that the total weight 
of all starters is equal 
to M0 

1 
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Reference calculations

Each contributor submitted a reference calculation. The two following tables give their main
characteristics and the results obtained: final keff and fission fractions.

Table 5.7   Characteristics of the reference calculations

Table 5.8   Reference keff and fission fractions

Analysis of the final values of keff and fission fraction of the central sphere

Final keff

For each contribution, the 100 final keffvalues and their standard deviations, obtained with 0, 200,
400 inactive cycles, are plotted in the figures grouped in 5.c.

Table 5.9 to Table 5.15 give the dispersion of the final keff values and of their standard deviations,
as they are computed by the codes.

Reference Fission Factions 
Contributor Reference keff Sphere (1,1) Sphere (3,3) Sphere (5,5) 

ANL / VIM 1.11370 ± 0.00008 1.01.10-4 ± 3.10-5 0.90851 ± 4.10-4 1.01.10-4 ± 3.10-5 
EMS / KENO 1.11234 ± 0.00009 2.60.10-4 ± 3.85.10-6 0.90904 ± 9.09.10-5 2.50.10-4 ± 3.63.10-6
IPPE / KENO 1.11287 ± 0.00008 2.39.10-4 ± 3.58.10-6 0.91116 ± 9.11.10-5 2.36.10-4 ± 3.64.10-6
IRSN / MORET 1.11362 ± 0.00008 2.31.10-4 ± 4.10-6 0.90985 ± 1.16.10-4 2.31.10-4 ± 4.10-6 
JNC / KENO 1.12172 ± 0.00009 2.58.10-4 ± 2.03.10-6 0.90874 ± 1.13.10-4 2.55.10-4 ± 2.09.10-6
LANL / MCNP 1.11294 ± 0.00009 2.54.10-4 ± 0.91062 ± 2.54.10-4 ± 
ORNL / KENO 1.11242 ± 0.00009 2.51.10-4 ± 3.72.10-6 0.90815 ± 9.08.10-5 2.51.10-4 ± 3.55.10-6

Contributor Cycles Histories 
per cycle 

Skipped
cycles 

Active
histories

Initial source 

ANL / VIM 6,000 20,000 1,000 100 million uniform inside the spheres 
EMS / KENO 11,000 10,000 1,000 100 million flat source distributed over all 

fissile material 
IPPE / KENO 11,000 10,000 1,000 100 million all neutrons in the center of 

the central sphere 
IRSN / MORET 11,000 10,000 1,000 100 million 93% neutrons are started 

uniformly in the sphere (3,3) 
JNC / KENO 11,000 10,000 1,000 100 million 91% neutrons are started 

uniformly in the sphere (3,3). 
LANL / MCNP 6,000 10,000 1,000 50 million equal in each of the 25 

spheres
ORNL / KENO 11,000 10,000 1,000 100 million starting points chosen 

according to a cosine 
distribution throughout the 
problem; points that are not in 
fissile material are discarded. 
KENO option NST=1 (start 
type 1) 
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� min: minimum value of the 100 final keff values and of their standard deviations,

� mean: mean value of the 100 final keff values and of their standard deviations,

� median: median value of the 100 final keff values and of their standard deviations,

� max: maximal value of the 100 final keff values and of their standard deviations.

Table 5.9   Final keff – ANL / VIM

Table 5.10   Final keff – EMS / KENO (SCALE-4.4)

Table 5.11   Final keff – IPPE / KENO (SCALE-4.3)

Table 5.12   Final keff – IRSN / MORET

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.03042 0.00208 1.05380 0.00201 1.07712 0.00199 
mean 1.09197 0.00242 1.10641 0.00222 1.11167 0.00215 
median 1.09731 0.00241 1.11089 0.00216 1.11292 0.00213 
max 1.11185 0.00275 1.11766 0.00281 1.11851 0.00267 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.03284 0.00210 1.05521 0.00207 1.07466 0.00205 
mean 1.09209 0.00247 1.10543 0.00228 1.10994 0.00221 
median 1.09733 0.00244 1.10985 0.00222 1.11081 0.00218 
max 1.11299 0.00287 1.11692 0.00284 1.11974 0.00273 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.04589 0.00263 1.06472 0.00234 1.08410 0.00223 
mean 1.09283 0.00548 1.10605 0.00362 1.10993 0.00307 
median 1.09714 0.00566 1.11049 0.00291 1.11106 0.00285 
max 1.11458 0.00842 1.11768 0.00782 1.11805 0.00702 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.02769 0.00207 1.05096 0.00208 1.07347 0.00209 
mean 1.09369 0.00248 1.10686 0.00228 1.11112 0.00223 
median 1.09952 0.00248 1.11133 0.00224 1.11223 0.00221 
max 1.11513 0.00284 1.12046 0.00273 1.11937 0.00271 
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Table 5.13   Final keff – JNC / KENO (SCALE-4.4)

Table 5.14   Final keff – LANL / MCNP

Table 5.15   Final keff – ORNL / KENO (SCALE-4.4a)

Observations

Since all the minimum keff values obtained are greater than 1.007, which is approximately the keff

of the system without the central sphere, no wrong convergence was obtained, i.e. the central sphere
was always sampled, i.e. in the conditions of calculation (125 neutrons per cycle), the central sphere
never stayed unvisited during the first 1 000 cycles.

If more replicas had been run, maybe some of them would have been unconverged.

The final keff values are biased (underestimated) only due to the presence of an initial transient
during which the distribution of sources is not converged (the most reactive sphere is under-sampled).

As expected, the greater the number of inactive cycles (i.e. the smaller the size of transient in the
active cycles):

� the greater the final keff values (since the keff is initially underestimated),

� the lower the standard deviation values.

The three minimum final keff values obtained with MCNP (1.05756, 1.07862, 1.09798) are
systematically higher than those obtained with the three other codes: KENO, MORET, VIM, whatever

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.04362 0.00283 1.06553 0.00246 1.08819 0.00238 
mean 1.09227 0.00561 1.10589 0.00361 1.11018 0.00288 
median 1.09587 0.00572 1.10874 0.00293 1.11072 0.00277 
max 1.11259 0.00820 1.11504 0.00794 1.11665 0.00673 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.05756 0.00186 1.07862 0.00179 1.09798 0.00177 
mean 1.09302 0.00219 1.10615 0.00197 1.11087 0.00188 
median 1.09742 0.00217 1.10946 0.00190 1.11101 0.00187 
max 1.11484 0.00259 1.11667 0.00248 1.11779 0.00208 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.02354 0.00265 1.04658 0.00239 1.06878 0.00236 
mean 1.10139 0.00553 1.11539 0.00353 1.11910 0.00305 
median 1.10384 0.00585 1.11898 0.00294 1.12034 0.00285 
max 1.12338 0.00870 1.12608 0.00789 1.12679 0.00798 
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the number of inactive cycles is. The origin of such a difference should be investigated.

As far as standard deviations are concerned, the results can be grouped into three categories, from
the lowest to the highest values:

1) MCNP,

2) MORET, VIM, KENO (SCALE-4.3),

3) KENO (SCALE-4.4).

Two reasons can explain the fact that the standard deviations estimated with KENO (SCALE-4.4)
are higher than with the three other codes:

1) Contrarily to the three other codes, KENO in the version 4.4 of SCALE takes into account
correlations between cycles. The standard deviation of keff is computed using a batched
estimate[5] in which the batch size is automatically determined by the code to maximum the
standard deviation estimate.

2) Contrarily to the three other codes, KENO does not compute combinations of several keff

estimators (three in MCNP, five in MORET, two in VIM). Moreover, the collision estimator
used by KENO is not the better one for test 4.

The difference between MCNP and the 2 other codes MORET and VIM should be investigated.

Table 5.16 compares the external standard deviations (defined below) and the ratios of the external
standard deviation over the mean value of the 100 standard deviations. The external standard deviation
(“external std” in the table) of final keff is calculated from the observed scatter of the population of
replica final keff, i.e. the standard deviation of 100 final keff values.

The ratio of the external standard deviation over the mean value of the 100 standard deviations
(“external std mean std” in the table) gives some indication of the Monte Carlo underestimation of the
individual eigenvalue uncertainties. The theoretical value of this ratio is 1 if the cycle keff series are
stationary and if the standard deviations of the individual final keff are correctly estimated. When the
two conditions are fulfilled, the internal standard deviation of a single calculation reflects perfectly the
external standard deviation (i.e. the scatter) of a set of replicas.

This is precisely what we can observe in Table 5.16:

1) The ratio “external standard deviation over mean standard deviation” is all the lower when as
the number of inactive cycles is higher.

2) The ratio tends to be smaller with the three contributions based on KENO of SCALE-4.4
which uses a better estimator of the final keff standard deviation than the conventional
estimator assuming no correlation between cycles.
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Table 5.16   External standard deviation of Final keff and comparison
with the mean standard deviation

The external standard deviation is reduced as the number of inactive cycles is increased. The
dispersion of the results decreases due to the elimination of part of the transient in the active cycles.

The external standard deviation values can be grouped into two categories, from the lowest to the
highest:

1) MCNP, KENO (SCALE-4.4a: ORNL),

2) KENO (SCALE-4.4: EMS, JNC), MORET, VIM, KENO (SCALE-4.3: IPPE).

The three external standard deviations of final keff values obtained with MCNP are systematically
lower than with the three other codes: KENO, MORET, VIM, whatever the number of inactive cycles
is.

This observation is probably linked to the fact that the three minimum final keff values obtained
with MCNP are systematically higher than with the three other codes.

The various observations concerning the results obtained with MCNP highlight the smallest
dispersion. A plausible explanation is the fact that neutrons can survive absorption in MCNP tending
to decrease the variance per history. It should be noticed that KENO has the same feature as MCNP
(but the default threshold of the Russian roulette is 0.333 in KENO as compared to 0.25 in MCNP)
whereas in MORET and VIM, neutrons do not survive absorption

Surprisingly, the scatter of the results obtained by the four users of KENO is not the same. It
should be noted that the scatter of the results obtained by ORNL tends to be significantly lower.

The four users of KENO did not use the same cross-sections library or the same code for the cross-
sections preparation (different versions of CSAS or CONSYST for IPPE) but is it the only origin of
that difference? Generally they used the same options (in particular the same threshold of the Russian
roulette), with the exception that IPPE and ORNL used P5, as compared to P3 for EMS, and with the
exception that IPPE used the version 4.3 of SCALE in which the batching was not available.

The most appropriate comparison is between EMS (SCALE-4.4 with 238-group library) and
ORNL (SCALE-4.4a with 238-group library). The others used considerably different cross-section
libraries, the effects of which are difficult to comment on. With regard to the differences between EMS
and ORNL results, the differences could be due to a variety of changes between SCALE-4.4 and

0 inactive cycle 200 inactive cycles 400 inactive cycles 

external std 
external std / 

mean std 
external std 

external std / 
mean std 

external std 
external std / 

mean std 
ANL / VIM 0.01701 6.87117 0.01212 5.30638 0.00644 2.89195 
EMS / KENO 0.01616 2.94974 0.01157 3.19802 0.00574 1.87304 
IPPE / KENO 0.01800 7.28093 0.01299 5.70187 0.00725 3.27686 
IRSN / MORET 0.01660 6.85847 0.01181 5.31800 0.00609 2.82804 
JNC / KENO 0.01676 3.03301 0.01241 3.51017 0.00748 2.45214 
LANL / MCNP 0.01423 6.49581 0.00909 4.61621 0.00317 1.68318 
ORNL / KENO 0.01454 2.59084 0.00919 2.54503 0.00399 1.38408 
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SCALE-4.4a, most likely related to the cross-section/material processing routines, for example changes
in NITAWL, the cross-section library, or the Standard Composition Library. No significant changes
were made to KENO V.a between SCALE-4.4 and SCALE-4.4a.

The potential for differences due to P3 (EMS) and P5 (ORNL) scattering treatment (both using
discrete angle scattering) has been investigated. New results based on P3 still obtained with SCALE
4.4a have been submitted by ORNL and analyzed (Tables 5.17 and 5.18). The scatter of these results
is more important than with P5 and is closer to the scatter of the other contributions obtained with
SCALE. A further study should be carried out to provide an explanation to this point.

Table 5.17   Final keff – ORNL / KENO (SCALE-4.4a) – Submission based on P3

Table 5.18   External standard deviation of Final keff

and comparison with the mean standard deviation
ORNL / KENO (SCALE-4.4a) – Submission based on P3

Final Fission Fraction of the Central Sphere

For each contribution, the 100 final fission fractions values of the central sphere and their standard
deviations, obtained with 0, 200, 400 inactive cycles, are plotted in the figures of 5.d.

Tables 5.19 to 5.25 give the dispersion of the final fission fractions values of the central sphere
and of their standard deviations, as they are computed by the codes, when this information is available.

� min: minimum value of the 100 final fission fractions values of the central sphere and of their
standard deviations,

� mean: mean value of the 100 final fission fractions values of the central sphere and of their
standard deviations,

� median: median value of the 100 final fission fractions values of the central sphere and of their
standard deviations,

� max: maximal value of the 100 final fission fractions values of the central sphere and of their
standard deviations.

0 inactive cycle 200 inactive cycles 400 inactive cycles 

external std 
external std / 

mean std external std
external std / 

mean std external std 
external std / 

mean std 
ORNL / KENO 0.01789 3.18841 0.01330 3.69509 0.00770 2.50557 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.01716 0.00285 1.04145 0.00238 1.06409 0.00237 
mean 1.09176 0.00561 1.10567 0.00360 1.10945 0.00307 
median 1.09683 0.00557 1.11002 0.00295 1.11087 0.00286 
max 1.11303 0.00860 1.11777 0.00843 1.11803 0.00843 
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Table 5.19   Final fission fraction of central sphere (ffcs) – ANL / VIM

Table 5.20   Final fission fraction of central sphere – EMS / KENO

Table 5.21   Final fission fraction of central sphere – IPPE / KENO

Table 5.22   Final fission fraction of central sphere – IRSN / MORET

Table 5.23   Final fission fraction of central sphere – JNC / KENO

0 inactive cycle 200 inactive cycles 400 inactive cycles 
f.f.c.s. std f.f.c.s. std f.f.c.s. std

min 0.10734 0.00336 0.29248 0.00310 0.47479 0.00308 
mean 0.75325 0.00486 0.86560 0.00361 0.89214 0.00332 
median 0.77401 0.00507 0.89926 0.00321 0.90146 0.00320 
max 0.90383 0.00636 0.92688 0.00609 0.92191 0.00617 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
f.f.c.s. std f.f.c.s. std f.f.c.s. std

min 0.23630 0.00390 0.42070 0.00150 0.60480 0.00150 
mean 0.73365 0.01009 0.85959 0.00482 0.90227 0.00276 
median 0.78155 0.00975 0.90500 0.00245 0.91435 0.00215 
max 0.90220 0.01440 0.93190 0.01390 0.93490 0.01320 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
f.f.c.s. std f.f.c.s. std f.f.c.s. std

min 0.25534 0.00354 0.44190 0.00249 0.61759 0.00248 
mean 0.75368 0.00980 0.85950 0.00517 0.89359 0.00358 
median 0.79526 0.00971 0.89837 0.00306 0.90452 0.00294 
max 0.90829 0.01576 0.92321 0.01507 0.92592 0.01402 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
f.f.c.s. std f.f.c.s. std f.f.c.s. std

min 0.34505 0.00416 0.52477 0.00248 0.70269 0.00240 
mean 0.75607 0.00977 0.86243 0.00490 0.89371 0.00351 
median 0.78411 0.01024 0.89596 0.00313 0.90410 0.00297 
max 0.89544 0.01503 0.92448 0.01453 0.92657 0.01232 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
f.f.c.s. std f.f.c.s. std f.f.c.s. std

min 0.23562 0.01213 0.42061 0.00479 0.59765 0.00422 
mean 0.75224 0.03040 0.85959 0.01446 0.89322 0.00909 
median 0.79435 0.03118 0.89608 0.00799 0.90327 0.00725 
max 0.89897 0.04737 0.92608 0.04711 0.92865 0.04476 
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Table 5.24   Final fission fraction of central sphere – LANL / MCNP

Table 5.25   Final fission fraction of central sphere – ORNL / KENO

Observations

The review of the minimum fission fraction values of central sphere leads to the same conclusion
as the review of the final keff values: the central sphere never stayed unsampled during the first 1 000
cycles. The final fission fraction values are underestimated only due to the presence of an initial
transient during which the most reactive sphere is under-sampled.

As expected, the greater the number of inactive cycles (i.e. the smaller the portion of the transient
remaining in the active cycles):

� the greater the final fission fraction values in central sphere,

� the lower the standard deviation values.

The three minimum final fission fraction values of the central sphere obtained with MCNP
(0.48820, 0.66148, 0.82961) are systematically higher than with the three other codes: KENO,
MORET, VIM, whatever the number of inactive cycles is. The origin of such a difference should be
investigated.

As far as standard deviations are concerned, the results can be grouped into two categories, from
the lowest to the highest values:

1) KENO, MORET,

2) VIM.

MCNP standard deviations of final fission fractions were not reported.

In KENO and MORET, the standard deviation of fission fraction is computed assuming no
correlation between cycles. In VIM, no correlation is assumed but the cycle fission fractions are
batched into batches of 10 generations, giving more reliable estimations of the uncertainty. Table 5.26

0 inactive cycle 200 inactive cycles 400 inactive cycles 
f.f.c.s. std f.f.c.s. std f.f.c.s. std

min 0.37848 0.00440 0.56224 0.00230 0.73716 0.00240 
mean 0.75460 0.00985 0.86327 0.00511 0.89728 0.00324 
median 0.78439 0.01010 0.89152 0.00331 0.90295 0.00293 
max 0.89755 0.01491 0.92140 0.01456 0.92239 0.01179 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
f.f.c.s. std f.f.c.s. std f.f.c.s. std

min 0.48820 not available 0.66148 not available 0.82961 not available 
mean 0.75212 not available 0.86642 not available 0.90157 not available 
median 0.78086 not available 0.89542 not available 0.90493 not available 
max 0.90206 not available 0.93093 not available 0.93243 not available 
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compares the external standard deviations and the ratios of the external standard deviation to the mean
value of the 100 standard deviations.

� external std: external standard deviation, i.e. standard deviation of the 100 final fission
fraction values of the central sphere,

� external std / mean std: ratio of the external standard deviation over the mean value of the 100
standard deviations.

Table 5.26   External standard deviation of Final fission fraction of central sphere
and comparison with the mean standard deviation

The external standard deviation is reduced as the number of inactive cycles is increased due to the
reduction of the length of the transient in the active cycles. The external standard deviation values can
be grouped into two categories, from the lowest to the highest:

1) MCNP, KENO (SCALE-4.4a: ORNL),

2) KENO (SCALE-4.4: EMS, JNC), KENO (SCALE-4.3: IPPE), VIM, MORET.

The three external standard deviations of final fission fraction values of the central sphere
obtained with MCNP are systematically lower than with the three other codes: KENO, MORET, VIM,
whatever the number of inactive cycles is. This observation is probably related to the fact that the three
minimum final fission fraction values of the central sphere obtained with MCNP are systematically
higher (more converged) than with the three other codes.

As for the final keff values, the various observations obtained with MCNP display the smallest
dispersion. A plausible explanation is the fact that neutrons can survive absorption in MCNP tending
to decrease the variance per history. KENO has the same feature but the default threshold of the
Russian roulette is 0.333 in KENO as compared to 0.25 in MCNP.

Despite the fact that neutrons do not survive absorption in MORET and VIM, the scatter of the
results obtained with both those codes is of the same order than with KENO of the versions 4.3 and 4.4
of SCALE. (It should be noted that the scatter of the results obtained by ORNL with KENO of SCALE-
4.4a tends to be significantly lower but an additional analysis shows that this difference could be due
to the anisotropic scattering treatment). This may imply that another factor causes the smaller scatter
of results obtained with MCNP. It may also be that in MCNP all fission sites obtained during a cycle
are used as starters of the following cycle.

0 inactive cycle 200 inactive cycles 400 inactive cycles 

external std 
external std / 

mean std external std 
external std / 

mean std external std 
external std / 

mean std 
ANL / VIM 0.13080 4.30256 0.09074 6.27639 0.04355 4.78877 
EMS / KENO 0.12586 12.88185 0.08685 17.71504 0.03921 11.17409 
IPPE / KENO 0.13823 14.10121 0.09572 18.50083 0.04936 13.79466 
IRSN / MORET 0.13777 13.65097 0.09955 20.63692 0.04892 17.75590 
JNC / KENO 0.13434 27.62283 0.09846 27.30115 0.05746 17.29368 
LANL / MCNP 0.11002 not available 0.06666 not available 0.01658 not available 
ORNL / KENO 0.11231 11.39884 0.06787 13.28925 0.02535 7.83212 
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The values of the ratio “external standard deviation over mean standard deviation” are much
higher than for the final keff and are very far from the theoretical value of 1. This can be explained by
the fact that the dispersion due to the presence of the transient is larger for the fission fractions of the
central sphere than for the keff: during the transient, keff varies from around 1.0 to around 1.1 whereas
fission fraction of central sphere varies from around 0.0 to around 0.9. The batching used in VIM for
the estimation of the standard deviation of fission fractions tends to decrease the value of the ratio.
Nevertheless this ratio is still much larger than 1. This may imply two things:

1) the size of the batches (10) is not sufficient to eliminate the correlations between the batches,

2) the transient in the cycle fission fraction series is still significant even with 400 inactive cycles
(the duration of the transient varies widely from replica to replica, the fission source nearly
converged after as few as 50 generations, or as many as 950 generations).

Conclusion

This test problem provides a rather difficult situation where the number of neutrons per generation
was kept quite small (125 neutrons), the initial source was intentionally chosen to concentrate on less
reactive units, and the coupling between the units is low. Despite that, the calculations made with a
variety of codes and hundred replicas did not exhibit a single situation where the central, most reactive
sphere remained undersampled during more than 1 000 cycles. Of course, if more replicas had been run,
or if less than 1 000 active cycles had been run, some replicas would probably have failed in this way.
Nevertheless this observation suggests that the convergence property of Monte Carlo powering
algorithm leads to a source distribution close enough to the true solution to avoid the risk of large
under-estimation. If a sufficient number of cycles is run, the main problem seems to be more in the
detection of this convergence and the possibility to use reliable algorithms to truncate the transient.

The final values of keff and fission fraction of central sphere are underestimated only due to the
presence in the active cycles of an initial transient during which the distribution of sources is not
converged (the most reactive sphere is under-sampled). The greater the number of inactive cycles (i.e.
the smaller the size of transient in the active cycles):

� the greater the final values of keff and fission fraction of central sphere,

� the lower the standard deviation values.

400 inactive cycles are generally insufficient for the configuration studied in this test, especially so for
the bad initial source guess. The effect of the transient is still visible when observing the ratio "external
standard deviation over mean standard deviation" of the fission fraction of central sphere.

The results obtained with MCNP highlight the smallest dispersion of the final values of keff and
fission fraction of central sphere. A plausible explanation, but maybe not the only one, is the fact that
neutrons can survive absorption in MCNP as in KENO. The threshold of the Russian roulette is 0.25
in MCNP and 0.333 in KENO. As a consequence the histories of neutrons are longer in MCNP than in
KENO and histories in KENO are longer than in VIM or MORET since neutrons do not survive
absorption in those two codes. Nevertheless, the dispersions of the results differ according to the user
of KENO. It should be noted that the scatter of the results obtained by ORNL tends to be significantly
lower but an additional analysis has shown that this difference could be due not only to different cross-
sections libraries but also, in a great part, to the anisotropic scattering treatment. Further investigation
is needed to explain the origins of the differences. Another plausible explanation to investigate is the
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fact that in MCNP all fission sites obtained during a cycle are used as starters of the following cycle.
In fact, a great variety of parameters (like the anisotropic scattering treatment) should be studied
independently to identify their impact on the dispersion of the results.

Finally, more reliable estimations of uncertainties are obtained when correlations between
generations are taken into account in the calculation of keff standard deviation. In this respect, the
methods implemented in KENO (automated, batched estimate) and VIM (batching method) lead to
improved results compared to the standard method where inter-generation correlation are ignored.

Analysis of the cycle keff series

In the previous section, it was observed that, if a sufficient number of cycles are run, sources
converge to the correct distribution. In this case, the main problem is to remove the initialization bias.
One method would be to detect when the cycle fission fractions series become stationary, but we do not
normally have cycle-by-cycle estimates of the fission fractions. Nevertheless, the utility of test problem
4 is in the fact that keff is very sensitive to the source distribution. 

The main analysis has been focused on the cycle keff series provided by each contributor. An
algorithm has been used to automatically suppress the transient in each cycle keff series. It should be
recalled that the cycle keff estimator considered differs form one code to another:

� KENO: source-collision,

� MCNP: source-collision,

� MORET: balance-track-length,

� VIM: source-track-length.

Refer to the Specifications/Required Information about Codes (above).

As the test problem 4 configuration includes unmoderated and unreflected fissionable material,
the mean free path of neutrons is large compared to the sphere dimensions and as a consequence the
average number of collisions is very low. To get acceptable statistics the collision estimators require
more neutron histories than the track-lengths estimators. This is why, in the framework of this test, the
track-length keff estimator is the best one, i.e. its uncertainties tend to be the lowest, all other things
being equal. In contrast, the uncertainties of the collision estimators tend to be the highest. In addition,
“balance” estimators usually have lower uncertainties than “source” estimators, all other things being
equal.

Automatic transient suppression

Stationarity detection test

As illustrated in Appendix 5.e, many tests can be performed to determine if the cycle keff series is
stationary [6]. We have used an association of the modified Schruben test and of the Vassilacopoulos
test, designed for the detection of negative transients (initial underestimation of the keff), both described
in Appendix 5.e. The stationarity assumption is rejected if it is rejected by one of the two tests. The
level of significance of the modified Schruben test is α = 5%. The level of significance of the
Vassilacopoulos test is α = 2.5%. Table 5.27 gives the percentage of replicas non-stationary using this
combination of tests.
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Table 5.27   Percentage of replicas non-stationary using a combination of the modified
Schruben test and of the Vassilacopoulos test

Principle of automatic transient suppression [7]

The stationary detection test is first applied on the whole cycle keff series. If the stationarity is not
detected then a fixed number of cycles is removed from the beginning of the series. We have chosen
cutting 5% of the initial length of the series, i.e. 50 cycles. Then, the stationary detection test is
performed on the new series (computation of the statistic, of the p-value, comparison with the level of
significance). The tests and truncations are performed until stationarity detection.

See the tables in Appendix 5.f for the number of active cycles removed until detection of
stationarity for the 300 replicas provided by each contributor (100 with 0 inactive cycle, 100 with 200
inactive cycle, 100 with 400 inactive cycle).

Standard deviation calculation

For each cycle keff series provided by each contributor, the same method is applied to compute the
standard deviation of the final keff after suppression of the transient. The method used is a modification
of the method presented by Ueki et al. [8]. For details, refer to Appendix 5.g.

Final keff after automatic suppression of transient active cycles

For each contribution, the 100 final keff values and their standard deviations, obtained with 0, 200,
400 inactive cycles, are plotted in the figures grouped in Appendix 5.h. Tables 5.28 to 5.34 give the
dispersion of the final keff values and of their standard deviations after the application of the automatic
suppression of transient active cycles. This time, for all the replicas of each contribution, the standard
deviations are recomputed with the same method.

� min: minimum value of the 100 final keff values and of their standard deviations,

� mean: mean value of the 100 final keff values and of their standard deviations,

� median: median value of the 100 final keff values and of their standard deviations,

� max: maximal value of the 100 final keff values and of their standard deviations.

The scatter of final keff values after the automatic suppression of transient active cycles, as
illustrated by the figures and tables, allows to note the powerfulness of the automatic suppression of
transient.

0 inactive cycle 200 inactive cycles 400 inactive cycles 
ANL / VIM 87 38 19 
EMS / KENO 91 38 19 
IPPE / KENO 97 36 19 
IRSN / MORET 98 47 24 
JNC / KENO 90 38 20 
LANL / MCNP 94 43 11 
ORNL / KENO 96 44 17 
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Table 5.28   Final keff after automatic suppression 
of transient active cycles – ANL / VIM

Table 5.29   Final keff after automatic suppression
of transient active cycles – EMS / KENO

Table 5.30   Final keff after automatic suppression 
of transient active cycles – IPPE / KENO

Table 5.31   Final keff after automatic suppression 
of transient active cycles – IRSN / MORET

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.10536 0.00207 1.10693 0.00202 1.10713 0.00214 
mean 1.11314 0.00333 1.11337 0.00295 1.11387 0.00292 
median 1.11355 0.00317 1.11297 0.00282 1.11379 0.00285 
max 1.12398 0.00651 1.12456 0.00642 1.13696 0.00675 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.10365 0.00220 1.10418 0.00206 1.10486 0.00194 
mean 1.11173 0.00314 1.11182 0.00281 1.11190 0.00269 
median 1.11162 0.00306 1.11156 0.00276 1.11192 0.00265 
max 1.12159 0.00603 1.12289 0.00430 1.12265 0.00361 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.10103 0.00219 1.10182 0.00209 1.10048 0.00207 
mean 1.11085 0.00313 1.11122 0.00287 1.11152 0.00278 
median 1.11094 0.00299 1.11139 0.00281 1.11166 0.00271 
max 1.11898 0.00739 1.12246 0.00512 1.11986 0.00501 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.09909 0.00280 1.10280 0.00254 1.10428 0.00253 
mean 1.11176 0.00381 1.11231 0.00342 1.11250 0.00327 
median 1.11206 0.00376 1.11247 0.00339 1.11256 0.00323 
max 1.12527 0.00748 1.12259 0.00505 1.12072 0.00434 
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Table 5.32   Final keff after automatic suppression 
of transient active cycles – JNC / KENO

Table 5.33   Final keff after automatic suppression 
of transient active cycles – LANL / MCNP

Table 5.34   Final keff after automatic suppression 
of transient active cycles – ORNL / KENO

Table 5.35 compares the external standard deviations and the ratios of the external standard
deviation over the mean value of the 100 standard deviations, after automatic suppression of transient
active cycles:

� external std: external standard deviation, i.e. standard deviation of the 100 final keff values,

� external std / mean std: ratio of the external standard deviation over the mean value of the 100
standard deviations.

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.10262 0.00232 1.10373 0.00221 1.10492 0.00208 
mean 1.11091 0.00315 1.11052 0.00280 1.11116 0.00274 
median 1.11091 0.00300 1.11014 0.00272 1.11094 0.00265 
max 1.12550 0.00774 1.11685 0.00390 1.12150 0.00584 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.09930 0.00237 1.10191 0.00219 1.10157 0.00214 
mean 1.11141 0.00330 1.11150 0.00291 1.11146 0.00278 
median 1.11119 0.00321 1.11118 0.00287 1.11112 0.00279 
max 1.12709 0.00570 1.12244 0.00504 1.11759 0.00388 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
keff std keff std keff std

min 1.10576 0.00227 1.11323 0.00201 1.11342 0.00209 
mean 1.12035 0.00331 1.12109 0.00288 1.12101 0.00275 
median 1.12024 0.00300 1.12098 0.00271 1.12126 0.00269 
max 1.13032 0.01520 1.13834 0.00768 1.13002 0.00604 
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Table 5.35   External standard deviation of Final keff and comparison with the mean
standard deviation after automatic suppression of transient active cycles

Table 5.35 should be compared with Table 5.16, corresponding to the final keff and their standard
deviation provided by the contributors, as they were computed by the codes. This time, the ratios
“external standard deviation over the mean standard deviation” are closer to 1. This comes from:

� the suppression of transient,

� the improved calculation of the final keff standard deviations taking into account correlations.

Other statistical tests performed

In this section, two commonly used statistical tests are tried with the cycle keff series provided by
the contributors, before and after the automatic suppression of the transient active cycles.

These two tests are not necessarily implemented in the same way here as in the codes.

Cycle values normally distributed

In the MORET code, the cycle keff values are divided into 12 bins based on the mean value mu
and the standard deviation sigma of the entire cycle keff series:

� 10 bins of width sigma between mu – 2.5 sigma and mu + 2.5 sigma,

� 1 bin between 0 and mu – 2.5 sigma,

� 1 bin between mu + 2.5 sigma and infinity.

We observe that such a definition of bins does not allow an efficient detection of transients. Most of the
replicas obtained with MORET passed the normality test. Two main reasons can be proposed:

� firstly, mu and sigma are computed on the basis of the whole series; they can be strongly
biased by the presence of a transient,

� secondly, there are too many bins near the center and not enough bins in the tails of the
distribution.

0 inactive cycle 200 inactive cycles 400 inactive cycles 

external std 
external std / 

mean std external std 
external std / 

mean std external std 
external std / 

mean std 
ANL / VIM 0.00474 1.24395 0.00410 1.19708 0.00388 1.18821 
EMS / KENO 0.00350 1.11988 0.00349 1.21506 0.00345 1.23948 
IPPE / KENO 0.00351 1.11744 0.00316 1.12235 0.00296 1.09806 
IRSN / MORET 0.00371 1.11373 0.00332 1.12779 0.00364 1.24689 
JNC / KENO 0.00388 1.17451 0.00376 1.30360 0.00318 1.15472 
LANL / MCNP 0.00426 1.29241 0.00329 1.12904 0.00289 1.03911 
ORNL / KENO 0.00402 1.27407 0.00309 1.10487 0.00297 1.08538 

92



This is why we have chosen here to divide the cycle keff values of the whole series into 12 bins based
on the mean value mu and the standard deviation sigma of the cycle keff values of the second half of the
cycle keff series:

� 10 bins of width sigma between mu – 5 sigma and mu + 5 sigma,

� 1 bin between 0 and mu – 5 sigma,

� 1 bin between mu + 5 sigma and infinity.

This time, mu and sigma are less affected by the presence of a transient and the number of bins in
the tails is more important. This choice may be not pertinent because the expected frequency of the
extreme bins is too low: the normality hypothesis may be rejected too frequently.

The observed frequencies of the 12 bins are compared with the expected frequencies of the 12 bins
in the case of the normal law N(0,1), using the statistic:

If the cycle values are normally distributed, the statistic d2 tends to be distributed as a chi-square.

In the test implemented in the MORET code, the number of degrees of freedom is 9 because there
are 12 bins, in which a fixed number of values are divided, and 2 parameters are estimated: the sample
mean and the sample standard deviation.

In the test proposed here, the number of degrees of freedom is difficult to determine because the
2 estimated parameters mu and sigma are not based on the whole sample. The real degree of freedom
is probably between 9 and 11. We have chosen the value 11 which leads to rejection less often than the
value 9.

The normality test is based on the statistic d2. The p-value of the test is the probability of getting
a value more extreme than d2 under the hypothesis of a chi-squared distribution with 11 degrees of
freedom for d2.

The null hypothesis of the test (the cycle values are normally distributed) is rejected if the p-value
is lower than 0.05.

Tables 5.36 and 5.37 give the percentage of the replicas with cycle values not normally distributed
respectively before and after the automatic suppression of the transient active cycles.
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Table 5.36   Percentage of the replicas with cycle values not normally distributed
before automatic suppression of transient active cycles

Before the automatic suppression of the transient, the percentage of replicas with cycle values not
normally distributed decreases when the number of inactive cycles increases. The test is efficient but
not as much as the stationarity test (refer to Table 5.37).

Table 5.37   Percentage of the replicas with cycle values not normally distributed
after automatic suppression of transient active cycles

After the automatic suppression of the transient, the percentage of replicas with cycle values not
normally distributed is low and rather independent of the number of inactive cycles but greater than the
level of significance of the test (5 %) (especially in the case of ANL / VIM). This is what we expected
due to the too low expected frequencies of the extreme bins. Nevertheless, the normality test seems to
confirm that the transient has been correctly removed from each replica.

Comparison of the mean values of the two halves

Let mu1 and sigma1, mu2 and sigma2 denote the mean values and the standard deviations of the
mean of the first and second halves of the series. Sigma1 and sigma2 are computed using a modification
of the method of Ueki et al [8] (refer to Appendix 5.g). If the two halves of the series have the same 

mean (this can be expected when the source is stationary),

tends to be normally distributed with a meanvalue of 0 and a standard
deviation of 1. The comparison of the halves means test is based on the statistic ∆. The p-value of the
test is the probability of getting a value more extreme than ∆, in absolute value, under the hypothesis
of normality for ∆. The null hypothesis of the test (the two halves of the series have the same mean) is
rejected if the p-value is lower than 0.05. Tables 5.38 and 5.39 give the percentage of the replicas with
the two halves’ means different before and after the automatic suppression of the transient active
cycles, respectively.

2
2

2
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 0 inactive cycles 200 inactive cycles 400 inactive cycles 
ANL / VIM 12 15 15 
EMS / KENO 12 6 4 
IPPE / KENO 9 8 9 
IRSN / MORET 6 6 9 
JNC / KENO 9 3 4 
LANL / MCNP 8 6 8 
ORNL / KENO 8 11 9 

0 inactive cycles 200 inactive cycles 400 inactive cycles 
ANL / VIM 74 37 21 
EMS / KENO 88 19 12 
IPPE / KENO 84 32 16 
IRSN / MORET 87 33 16 
JNC / KENO 89 25 9 
LANL / MCNP 87 33 13 
ORNL / KENO 89 36 11 
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Table 5.38   Percentage of the replicas with the two halves means different
before automatic suppression of transient active cycles

Before the automatic suppression of the transient, the percentage of replicas with the two halves
means different decreases when the number of inactive cycles increases but seems to be independent
of the contributor. The comparison of the two halves means does not allow detecting as much non-
stationary series as the stationary detection test (refer to Table 5.27).

Table 5.39   Percentage of the replicas with the two halves means different
after automatic suppression of transient active cycles

After the automatic suppression of the transient, the percentage of replicas with the two halves
means different is of the order of the level of significance of the test, whatever the number of inactive
cycle is and for each contributor. The transient seems to have been correctly removed from each replica.

Comparison of the distribution of (keff - keff,ref) / √(std2 + stdref
2) with normal law N(0,1) after automatic

suppression of transient active cycles

Let keff,ref and stdref denote the final keff and the standard deviation of the final keff of the reference
calculation. These values are provided by contributor in Table 5.8. Let keff and std denote the final keff

and the standard deviation of the final keff of a replica after the automatic suppression of transient active
cycles. The standard deviations are computed according the modified method of Ueki et al. detailed in
Appendix 5.g. If the initial transient is entirely removed from each replica and if the standard deviation
of the final keff of each replica is correctly computed (taking into account correlations between cycles),
the set of values (keff - keff,ref) / √(std 2 + stdref2) should be distributed as the normal law N(0,1).

The values (keff – keff,ref) / √(std 2 + stdref2) are divided into 6 bins:

� 4 bins of width 1 between –2 and 2,

� 1 bin between –infinity and –2,

0 inactive cycles 200 inactive cycles 400 inactive cycles 
ANL / VIM 4 2 3 
EMS / KENO 2 6 5 
IPPE / KENO 0 2 5 
IRSN / MORET 3 5 5 
JNC / KENO 4 3 3 
LANL / MCNP 0 2 7 
ORNL / KENO 0 4 4 

0 inactive cycles 200 inactive cycles 400 inactive cycles 
ANL / VIM 62 19 10 
EMS / KENO 63 23 12 
IPPE / KENO 67 22 13 
IRSN / MORET 69 29 14 
JNC / KENO 66 23 8 
LANL / MCNP 62 26 9 
ORNL / KENO 72 26 11 
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� 1 bin between 2 and infinity,

but also into 2 bins:

� the bin of negative values: (keff – keff,ref) < 0,

� the bin of positive values: (keff – keff,ref) > 0.

Tables 5.40 to 5.46 give the observed frequencies of the values (keff – keff,ref) / √(std 2 + stdref 2)
divided into 6 bins and 2 bins, after the automatic suppression of transient active cycles, in comparison
with the expected frequencies in the case of the normal law N(0,1). The histograms corresponding to
these tables are grouped in Appendix 5.i.

Table 5.40   Distribution of (keff - keff,ref) / √(std2 + stdref
2)

after automatic suppression of transient active cycles – ANL / VIM

Table 5.41   Distribution of (keff - keff,ref) / √(std2 + stdref
2)

after automatic suppression of transient active cycles – EMS / KENO

Observed frequencies Expected freq. 
bins 0 inactive cycle 200 inactive cycles 400 inactive cycles normal law N(0,1) 

< -2 11 8 7 2.27501 
[-2;-1] 21 23 22 13.59052 
[-1;0] 27 30 29 34.13447 
[0;1] 37 27 29 34.13447 
[1;2] 2 10 11 13.59052 
> 2 2 2 2 2.27501 
< 0 59 61 58 50.00000 
> 0 41 39 42 50.00000 
total 100 100 100 100.00000 

Observed frequencies Expected freq. 
bins 0 inactive cycle 200 inactive cycles 400 inactive cycles normal law N(0,1) 

< -2 12 10 12 2.27501 
[-2;-1] 15 17 20 13.59052 
[-1;0] 40 40 29 34.13447 
[0;1] 24 19 24 34.13447 
[1;2] 7 12 14 13.59052 
> 2 2 2 1 2.27501 
< 0 67 67 61 50.00000 
> 0 33 33 39 50.00000 
total 100 100 100 100.00000 
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Table 5.42   Distribution of (keff - keff,ref) / √(std2 + stdref
2)

after automatic suppression of transient active cycles – IPPE / KENO

Table 5.43   Distribution of (keff - keff,ref) / √(std2 + stdref
2)

after automatic suppression of transient active cycles – IRSN / MORET

Table 5.44   Distribution of (keff - keff,ref) / √(std2 + stdref
2)

after automatic suppression of transient active cycles – JNC / KENO

Observed frequencies Expected freq. 
bins 0 inactive cycle 200 inactive cycles 400 inactive cycles normal law N(0,1) 

< -2 6 9 8 2.27501 
[-2;-1] 22 15 19 13.59052 
[-1;0] 37 34 29 34.13447 
[0;1] 26 26 30 34.13447 
[1;2] 9 15 13 13.59052 
> 2 0 1 1 2.27501 
< 0 65 58 56 50.00000 
> 0 35 42 44 50.00000 
total 100 100 100 100.00000 

Observed frequencies Expected freq. 
bins 0 inactive cycle 200 inactive cycles 400 inactive cycles normal law N(0,1) 

< -2 4 3 1 2.27501 
[-2;-1] 23 19 17 13.59052 
[-1;0] 27 32 31 34.13447 
[0;1] 29 30 35 34.13447 
[1;2] 13 13 14 13.59052 
> 2 4 3 2 2.27501 
< 0 54 54 49 50.00000 
> 0 46 46 51 50.00000 
total 100 100 100 100.00000 

Observed frequencies Expected freq. 
bins 0 inactive cycle 200 inactive cycles 400 inactive cycles normal law N(0,1) 

< -2 10 7 6 2.27501 
[-2;-1] 20 25 27 13.59052 
[-1;0] 34 34 29 34.13447 
[0;1] 26 22 27 34.13447 
[1;2] 9 11 10 13.59052 
> 2 1 1 1 2.27501 
< 0 64 66 62 50.00000 
> 0 36 34 38 50.00000 
total 100 100 100 100.00000 
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Table 5.45   Distribution of (keff - keff,ref) / √(std2 + stdref
2)

after automatic suppression of transient active cycles –LANL / MCNP

Table 5.46   Distribution of (keff - keff,ref) / √(std2 + stdref
2)

after automatic suppression of transient active cycles – ORNL / KENO

In order to compare the distribution of the values (keff - keff,ref) / √(std 2 + stdref 2) with the normal
law N(0,1), the following statistic is computed:

� n being the number of bins (n being 2 or 6),

� fo,n are the observed frequencies of the n bins,

� fe,n are the expected frequencies of the n bins in the case of the normal law N(0,1).

If the values (keff - keff,ref) / √(std 2 + stdref 2) are normally distributed, the statistic d 2
n tends to be

distributed as a chi-square with n-1 degrees of freedom. The null hypothesis (the values (keff – keff,ref) /
√(std 2 + stdref

2) are normally distributed) is rejected if the p-value (probability of getting a value more
extreme than d 2

n , under the hypothesis of a chi-squared distribution with n-1 degrees of freedom for d 2
n )

is lower than 0.05.

n

1i n,e

2
n,en,o2

n if

ifif
d

Observed frequencies Expected freq. 
bins 0 inactive cycle 200 inactive cycles 400 inactive cycles normal law N(0,1) 

< -2 12 11 7 2.27501 
[-2;-1] 25 29 26 13.59052 
[-1;0] 26 28 37 34.13447 
[0;1] 27 28 20 34.13447 
[1;2] 9 4 10 13.59052 
> 2 1 0 0 2.27501 
< 0 63 68 70 50.00000 
> 0 37 32 30 50.00000 
total 100 100 100 100.00000 

Observed frequencies Expected freq. 
bins 0 inactive cycle 200 inactive cycles 400 inactive cycles normal law N(0,1) 

< -2 6 6 7 2.27501 
[-2;-1] 30 31 26 13.59052 
[-1;0] 36 31 38 34.13447 
[0;1] 17 25 21 34.13447 
[1;2] 8 5 8 13.59052 
> 2 3 2 0 2.27501 
< 0 72 68 71 50.00000 
> 0 28 32 29 50.00000 
total 100 100 100 100.00000 
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Tables 5.47 and 5.48 give the results of the chi-square tests respectively with 1 degree and 5
degrees of freedom. Bold numbers in these tables indicate the acceptance of the normality hypothesis.

Table 5.47   Comparison of the distribution of (keff - keff,ref) / √(std2 + stdref
2)

with the normal law N(0,1) – 2 bins – Chi square test with 1 degree of freedom
Normality hypothesis is accepted if p-value > 0.05 ( d 2

2 <3.84)

Table 5.48   Comparison of the distribution of (keff - keff,ref) / √(std2 + stdref
2)

with the normal law N(0,1) – 6 bins – Chi square test with 5 degree of freedom 
Normality hypothesis is accepted if p-value > 0.05 ( d 2

6 <11.07)

The final keff values obtained after the automatic suppression of the transient with the replicas
submitted by IRSN are the only ones which could be considered as being normally distributed around
the reference keff value. This surprising difference should be investigated. The next section will show
that that this difference cannot be attributed to a default of the automatic procedure used to suppress
the transient.

Percentage of replicas with a mean value greater than the reference keff value versus the number of
active cycles suppressed

In this section, the automatic suppression of the transient is not used, but an empirical and a global
criterion to determine if the whole set of replicas are stationary after the suppression of the same
number of initial active cycles in each replica. The mean values of the replicas should be equally
distributed around the reference keff. For this, the observed frequency f of replicas with a mean value
greater than the reference keff value is compared with the expected frequency of 50%. The following
statistic d2 is a measure of the distance between the observed distribution and the expected distribution:

0 inactive cycle 200 inactive cycles 400 inactive cycles 
2
6d p-value 2

6d p-value 2
6d p-value

ANL / VIM 48.96 2.26E-09 35.02 1.49E-06 49.10 2.11E-09 
EMS / KENO 49.15 2.07E-09 23.90 2.27E-04 17.09 4.33E-03 
IPPE / KENO 33.46 3.05E-06 24.91 1.45E-04 23.26 3.01E-04 
IRSN / MORET 11.42 4.37E-02 3.27 6.58E-01 1.93 8.59E-01 
JNC / KENO 17.31 3.95E-03 22.83 3.65E-04 18.57 2.31E-03 
LANL / MCNP 37.15 5.60E-07 36.60 7.22E-07 31.21 8.51E-06 
ORNL / KENO 56.84 5.44E-11 62.18 4.30E-12 30.46 1.20E-05 

0 inactive cycle 200 inactive cycles 400 inactive cycles 
2
2d p-value 2

2d p-value 2
2d p-value

ANL / VIM 11.56 6.74E-04 11.56 6.74E-04 4.84 2.78E-02 
EMS / KENO 3.24 7.19E-02 4.84 2.78E-02 2.56 1.10E-01 
IPPE / KENO 7.84 5.11E-03 10.24 1.37E-03 5.76 1.64E-02 
IRSN / MORET 0.64 4.24E-01 0.64 4.24E-01 0.04 8.41E-01 
JNC / KENO 9.00 2.70E-03 2.56 1.10E-01 1.44 2.30E-01 
LANL / MCNP 19.36 1.08E-05 12.96 3.18E-04 17.64 2.67E-05 
ORNL / KENO 6.76 9.32E-03 12.96 3.18E-04 16.00 6.33E-05 
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If the mean values of the replicas are equally distributed around the reference keff, the statistic d2

tends to be distributed as a chi-square with 1 degree of freedom.

The hypothesis (the mean values of the replicas are equally distributed around the reference keff)
is rejected if the probability of getting a value more extreme than d2, under the hypothesis of a
chi-squared distribution with 1 degree of freedom for d2, is lower than 0.05, i.e. if d2 < 3.84, i.e. if 
f < 40.2 or f > 59.8. If the frequency of replicas with a mean value greater than the reference keff value
is comprised between 40.2% and 59.8%, the whole set of replicas can be considered as stationary.

Figures 5.2 to 5.8 (see P. 96) represent, for each contribution, the percentage of replicas with a
mean value greater than the reference keff value versus the number of active cycles suppressed. These
figures show that the minimum number of cycles to suppress before getting a correct distribution
around the reference keff is obtained by IRSN / MORET whereas the maximum number is obtained by
LANL / MCNP.

The present conclusions confirm the results of the previous section: the final keff values obtained
after the automatic suppression of the transient with the replicas submitted by IRSN were the only ones
which could be considered as being normally distributed around the reference keff value. Such a
difference between the various contributions deserves more attention because it cannot be attributed to
a default of the automatic procedure used to suppress the transient. We propose two possible origins of
that difference:

� different cycle keff estimators are used by the contributors; the "balance-track-length"
estimator used in the MORET code is the best one in the framework of the test 4
configuration;

� different algorithms are used in the codes to estimate the new distribution of sources at each
cycle; the conventional strategy used by MORET is very close to the stratified sampling
because the proportion of sources in each fissile volume is equal to the proportion of fission
productions in each fissile volume during the previous cycle.
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Figure 5.2   ANL / VIM 

Figure 5.3   EMS / KENO
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Figure 5.4   IPPE / KENO

Figure 5.5   IRSN / MORET
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Figure 5.6   JNC / KENO

Figure 5.7   LANL / MCNP
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Figure 5.8   ORNL / KENO

Final conclusions

Test problem 4 is a 5 x 5 x 1 array of metal spheres interacting in air with low coupling. The initial
spatial distribution of neutrons was intentionally chosen to be far from the converged source. The
greatest part of the initial source was placed in one of the least reactive units. Moreover the population
of neutrons per generation was kept quite low (125 neutrons per cycle) in order to amplify the effects
of undersampling. In those conditions, the source convergence process requires a large number of
cycles before the most reactive unit is visited by a sufficient number of neutrons. As the number of
active cycles was limited to 1000 with a maximum number of 400 inactive cycles, the final keff

(cumulative over the active cycles) may be underestimated for two reasons:

1) Either the source convergence has not been achieved, i.e. the most reactive unit is still under-
sampled at the end of the simulation; in the worst case, the most reactive unit may be
unsampled and may remain so at the end of the simulation, leading to non-convergence.

2) Or source convergence has been achieved, but the number of skipped cycles is not sufficient.

In order to test the robustness of the criticality codes to converge to the correct distribution of sources
when the initial guess is not realistic, each contributor ran one hundred replicas of the same
configuration using different random seeds.

Despite the difficult conditions of test problem 4, the hundreds of replica calculations made with
a variety of codes did not exhibit a single situation where the central, most reactive sphere remained
undersampled during more than 1 000 cycles. Of course, if more replicas had been run, or if less than
1 000 active cycles had been run, some replicas would have probably have been unconverged. The
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1000-cycle calculations suggest that the convergence properties of the Monte Carlo powering
algorithm lead to a source distribution sufficiently close to the true solution to avoid the risk of large
under-estimation of keff. If a sufficient number of cycles is run, the main problem seems to be more in
the detection of this convergence and the use of reliable algorithms to truncate the transient.

The cumulative final values of keff and fission fraction of central sphere are underestimated only
because the number of skipped cycles is insufficient: the initial transient during which the distribution
of sources is not converged (most reactive sphere undersampled) is not entirely removed. The greater
the number of inactive cycles (i.e. the smaller the size of transient in the active cycles):

� the greater the cumulative final values of keff and fission fraction of central sphere;

� the lower the standard deviation values.

400 inactive cycles seem to be insufficient for the configuration studied in this test and especially for
the bad initial source guess considered.

The results obtained with MCNP highlight the smallest dispersion of the final values of keff and
fission fraction of central sphere. A plausible explanation, but maybe not the only one, is the fact that
neutrons can survive absorption in MCNP as in KENO. The threshold of the Russian roulette is 0.25
in MCNP and 0.333 in KENO. As a consequence the histories of neutrons are longer in MCNP than in
KENO and histories in KENO are longer than in VIM or MORET since neutrons do not survive
absorption in those two codes. Nevertheless, the dispersions of the results differ among KENO users.
It should be noted that the scatter of the results obtained by ORNL tends to be significantly lower but
an additional analysis has shown that this difference could be due not only to the different cross-
sections libraries but also, in great part, to the anisotropic scattering treatment. Further investigation is
needed to explain the origins of the differences. Another plausible explanation of the smallest
dispersion of the results with MCNP is the fact that all fission sites obtained during a cycle are used as
starters of the following cycle. In fact, a great variety of parameters (like the anisotropic scattering
treatment) should be studied independently to identify their impact on the dispersion of the results.

More reliable estimations of uncertainties are obtained when correlations between generations are
taken into account in the calculation of keff standard deviation. In this respect, the methods implemented
in KENO (use of correlation coefficients) and VIM (batching method) lead to improved results
compared to the standard method where inter-generation correlation are ignored.

The initial transient observed in the keff series is obviously a consequence of the source
distribution (or eigenvector) convergence process from the initial guess to the fundamental mode. Since
it is much easier to study the convergence in a series of scalar values than in a series of vectors, and
because the cycle keff series is used for the estimation of the keff eigenvalue, a first approach to suppress
the initial transient – using the Brownian bridge theory – focused on the stationarity detection of the
cycle keff series.

An algorithm, based on the Brownian bridge theory, to automatically suppress the initial transient
of cycle keff series was successfully applied to the results of the test problem 4. However the apparent
convergence of keff series does not strictly imply the convergence of the source distribution. Recently,
a stationarity diagnostic based on the Shannon entropy of source distribution, using the two-sample F
test, was proposed [9]. An advantage of this method lies in the use of the Shannon entropy of source
distribution which is a scalar value more representative of the source distribution than keff. The
algorithm based on the Brownian bridge theory to automatically suppress the initial transient, which
was tested here on cycle keff series, could also apply on cycle series of the Shannon entropy.
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The number of cycles that should be skipped in order to get a correct distribution of the final keff

around the reference keff varies from one code to the other. This number is the lowest for the results
obtained with the IRSN / MORET code and the highest when the LANL / MCNP code is used. No
obvious explanation for that was found. The cumulative final keff values obtained after the automatic
suppression of the transient with the replicas submitted by IRSN are the only ones which could be
considered as being normally distributed around the reference keff value. Such a difference between the
various contributions deserves a great attention. Here are given two possible origins of that difference:

� different cycle keff estimators are used by the contributors; the "balance-track-length"
estimator used in the MORET code is the best one in the framework of the test 4
configuration;

� different algorithms are used in the codes to estimate the new distribution of sources at each
cycle; the conventional strategy used by MORET is very close to the stratified sampling
because the proportion of sources in each fissile volume is equal to the proportion of fission
productions in each fissile volume during the previous cycle.
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Appendix 5.a

SAMPLE INPUT FILES

ANL / VIM

000111001 Kadotani, Skip 400, one replica, batches=10
1000 1 0 400
1250 20 0
1 1
4 2 26 1 51
0.00001 1.0 1.E-05 2.E+7
1.11 0.0
0 0 0 0 0

30300 40300260300420300

0 0 52
SPH 1 0.0 0.0 0.0 8.71
SPH 2 80.0 0.0 0.0 8.71
SPH 3 160.0 0.0 0.0 8.71
SPH 4 240.0 0.0 0.0 8.71
SPH 5 320.0 0.0 0.0 8.71
SPH 6 0.0 80.0 0.0 8.71
SPH 7 80.0 80.0 0.0 8.71
SPH 8 160.0 80.0 0.0 8.71
SPH 9 240.0 80.0 0.0 8.71
SPH 10 320.0 80.0 0.0 8.71
SPH 11 0.0 160.0 0.0 8.71
SPH 12 80.0 160.0 0.0 8.71
SPH 13 160.0 160.0 0.0 10.00
SPH 14 240.0 160.0 0.0 8.71
SPH 15 320.0 160.0 0.0 8.71
SPH 16 0.0 240.0 0.0 8.71
SPH 17 80.0 240.0 0.0 8.71
SPH 18 160.0 240.0 0.0 8.71
SPH 19 240.0 240.0 0.0 8.71
SPH 20 320.0 240.0 0.0 8.71
SPH 21 0.0 320.0 0.0 8.71
SPH 22 80.0 320.0 0.0 8.71
SPH 23 160.0 320.0 0.0 8.71
SPH 24 240.0 320.0 0.0 8.71
SPH 25 320.0 320.0 0.0 8.71
RPP 26 -40.0 40.0001 -40.0 40.0001 -40.0001 40.0001
RPP 27 40.0 120.0001 -40.0 40.0001 -40.0001 40.0001
RPP 28 120.0 200.0001 -40.0 40.0001 -40.0001 40.0001
RPP 29 200.0 280.0001 -40.0 40.0001 -40.0001 40.0001
RPP 30 280.0 360.0001 -40.0 40.0001 -40.0001 40.0001
RPP 31 -40.0 40.0001 40.0 120.0001 -40.0001 40.0001
RPP 32 40.0 120.0001 40.0 120.0001 -40.0001 40.0001
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RPP 33 120.0 200.0001 40.0 120.0001 -40.0001 40.0001
RPP 34 200.0 280.0001 40.0 120.0001 -40.0001 40.0001
RPP 35 280.0 360.0001 40.0 120.0001 -40.0001 40.0001
RPP 36 -40.0 40.0001 120.0 200.0001 -40.0001 40.0001
RPP 37 40.0 120.0001 120.0 200.0001 -40.0001 40.0001
RPP 38 120.0 200.0001 120.0 200.0001 -40.0001 40.0001
RPP 39 200.0 280.0001 120.0 200.0001 -40.0001 40.0001
RPP 40 280.0 360.0001 120.0 200.0001 -40.0001 40.0001
RPP 41 -40.0 40.0001 200.0 280.0001 -40.0001 40.0001
RPP 42 40.0 120.0001 200.0 280.0001 -40.0001 40.0001
RPP 43 120.0 200.0001 200.0 280.0001 -40.0001 40.0001
RPP 44 200.0 280.0001 200.0 280.0001 -40.0001 40.0001
RPP 45 280.0 360.0001 200.0 280.0001 -40.0001 40.0001
RPP 46 -40.0 40.0001 280.0 360.0001 -40.0001 40.0001
RPP 47 40.0 120.0001 280.0 360.0001 -40.0001 40.0001
RPP 48 120.0 200.0001 280.0 360.0001 -40.0001 40.0001
RPP 49 200.0 280.0001 280.0 360.0001 -40.0001 40.0001
RPP 50 280.0 360.0001 280.0 360.0001 -40.0001 40.0001
RPP 51 -39.9999 360.0000 -39.9999 360.0000 -40.0 40.0
RPP 52 -10.0 330.0 -10.0 330.0 -10.0 10.0
END
S11 1 1
V11 8 26 -1
S21 1 2
V21 8 27 -2
S31 1 3
V31 8 28 -3
S41 1 4
V41 8 29 -4
S51 1 5
V51 8 30 -5
S12 1 6
V12 8 31 -6
S22 1 7
V22 8 32 -7
S32 1 8
V32 8 33 -8
S42 1 9
V42 8 34 -9
S52 1 10
V52 8 35 -10
S13 1 11
V13 8 36 -11
S23 1 12
V23 8 37 -12
S33 1 13
V33 8 38 -13
S43 1 14
V43 8 39 -14
S53 1 15
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V53 8 40 -15
S14 1 16
V14 8 41 -16
S24 1 17
V24 8 42 -17
S34 1 18
V34 8 43 -18
S44 1 19
V44 8 44 -19
S54 1 20
V54 8 45 -20
S15 1 21
V15 8 46 -21
S25 1 22
V25 8 47 -22
S35 1 23
V35 8 48 -23
S45 1 24
V45 8 49 -24
S55 1 25
V55 8 50 -25

LEAK           8 -51

END

1 101 1 2 2600 2 3 201 1
4 2600 2 5 301 1 6 2600 2
7 401 1 8 2600 2 9 501 1
10 2600 2 11 601 1 12 2600 2
13 701 1 14 2600 2 15 801 1
16 2600 2 17 901 1 18 2600 2
19 1001 1 20 2600 2 21 1101 1
22 2600 2 23 1201 1 24 2600 2
25 1301 1 26 2600 2 27 1401 1
28 2600 2 29 1501 1 30 2600 2
31 1601 1 32 2600 2 33 1701 1
34 2600 2 35 1801 1 36 2600 2
37 1901 1 38 2600 2 39 2001 1
40 2600 2 41 2101 1 42 2600 2
43 2201 1 44 2600 2 45 2301 1
46 2600 2 47 2401 1 48 2600 2
49 2501 1 50 2600 2 51 000 -1

30300 40300
260300420300
4.549 E-02 2.560 E-03
4.3250 E-05 1.0810 E-05
1.0 E-05

125
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
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0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
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0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
0.0 0.0 0.0 1.00 1000000.0 1
80.0 0.0 0.0 1.00 1000000.0 1
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160.0 0.0 0.0 1.00 1000000.0 1
240.0 0.0 0.0 1.00 1000000.0 1
320.0 0.0 0.0 1.00 1000000.0 1
0.0 80.0 0.0 1.00 1000000.0 1
80.0 80.0 0.0 1.00 1000000.0 1
160.0 80.0 0.0 1.00 1000000.0 1
240.0 80.0 0.0 1.00 1000000.0 1
320.0 80.0 0.0 1.00 1000000.0 1
0.0 160.0 0.0 1.00 1000000.0 1
80.0 160.0 0.0 1.00 1000000.0 1
160.0 160.0 0.0 1.00 1000000.0 1
240.0 160.0 0.0 1.00 1000000.0 1
320.0 160.0 0.0 1.00 1000000.0 1
0.0 240.0 0.0 1.00 1000000.0 1
80.0 240.0 0.0 1.00 1000000.0 1
160.0 240.0 0.0 1.00 1000000.0 1
240.0 240.0 0.0 1.00 1000000.0 1
320.0 240.0 0.0 1.00 1000000.0 1
0.0 320.0 0.0 1.00 1000000.0 1
80.0 320.0 0.0 1.00 1000000.0 1
160.0 320.0 0.0 1.00 1000000.0 1
240.0 320.0 0.0 1.00 1000000.0 1
320.0 320.0 0.0 1.00 1000000.0 1
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EMS / KENO

The KENOVa input file for the calculation of case 1 is given below. The input file of Cases 2 and
3 only differ by the parameters gen and nsk which are increased by 200 for each case. In Case 2 this
means gen=1200 and nsk=200 while in case 3 gen=1400 and nsk=400. This preserves the number of
active cycles to 1000 for all cases. The input for the other 297 cases only involves a change of the
parameter rnd. Some of the rnd numbers chosen had to be rejected by the user since they were
interpreted by the KENOVa code as identical to previous numbers.

=csasi parm=size=3000000
SOURCE COINVERGENCE SERIES 4
238groupndf5 infhommedium
u-235 1 0 4.549E-2 293.0 end
u-238 1 0 2.56E-3 293.0 end
n 2 0 4.325E-5 293.0 end
o 2 0 1.081E-5 293.0 end
end comp
cellmix 1
end
kenova parm=size=1000000
Source convergence series 4 - Case 1
read param gen=1000 npg=125 nsk=0 fdn=yes xsc=14
res=200 wrs=94 lng=1000000 rnd=000000000000
end param
read geom
unit 1
com='Position (1,1) - R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 2
com='Pos (1,2) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 3
com='Pos (1,3) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 4
com='Pos (1,4) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 5
com='Pos (1,5) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 6
com='Pos (2,1) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
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unit 7
com='Pos (2,2) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 8
com='Pos (2,3) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 9
com='Pos (2,4) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 10
com='Pos (2,5) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 11
com='Pos (3,1) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 12
com='Pos (3,2) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 13
com='Pos (3,3) R=10.0 cm'
sphere 1 1 10
cuboid 2 1 40 -40 40 -40 40 -40
unit 14
com='Pos (3,4) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 15
com='Pos (3,5) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 16
com='Pos (4,1) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 17
com='Pos (4,2) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 18
com='Pos (4,3) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 19
com='Pos (4,4) R=8.71 cm'
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sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 20
com='Pos (4,5) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 21
com='Pos (5,1) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 22
com='Pos (5,2) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 23
com='Pos (5,3) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 24
com='Pos (5,4) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
unit 25
com='Pos (5,5) R=8.71 cm'
sphere 1 1 8.71
cuboid 2 1 40 -40 40 -40 40 -40
global unit 26
com='5x5x1'
array 1 0 0 0
end geom
read array
ara=1 nux=5 nuy=5 nuz=1
com='5x5x1 array'
fill 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
end fill
end array
read start
nst=6
NXS=1 NYS=1 NZS=1 LNU=101
NXS=2 NYS=1 NZS=1 LNU=102
NXS=3 NYS=1 NZS=1 LNU=103
NXS=4 NYS=1 NZS=1 LNU=104
NXS=5 NYS=1 NZS=1 LNU=105
NXS=1 NYS=2 NZS=1 LNU=106
NXS=2 NYS=2 NZS=1 LNU=107
NXS=3 NYS=2 NZS=1 LNU=108
NXS=4 NYS=2 NZS=1 LNU=109
NXS=5 NYS=2 NZS=1 LNU=110
NXS=1 NYS=3 NZS=1 LNU=111
NXS=2 NYS=3 NZS=1 LNU=112
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NXS=3 NYS=3 NZS=1 LNU=113
NXS=4 NYS=3 NZS=1 LNU=114
NXS=5 NYS=3 NZS=1 LNU=115
NXS=1 NYS=4 NZS=1 LNU=116
NXS=2 NYS=4 NZS=1 LNU=117
NXS=3 NYS=4 NZS=1 LNU=118
NXS=4 NYS=4 NZS=1 LNU=119
NXS=5 NYS=4 NZS=1 LNU=120
NXS=1 NYS=5 NZS=1 LNU=121
NXS=2 NYS=5 NZS=1 LNU=122
NXS=3 NYS=5 NZS=1 LNU=123
NXS=4 NYS=5 NZS=1 LNU=124
NXS=5 NYS=5 NZS=1 LNU=125
end start
end data
end
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IPPE / KENO

=cons9901
TASK:
*
* benchm4-01
*
MULTIC = 1
NOUT = 2
IHT = 4
IHS   = 77
NG    = 299
IPRIB = 0
IDELTA= 0
THERM = 1
NMOM  = 5
IZT = 2
INZ   = 4
NRZT = 2
ICOR  = 1 2
MAT = 1000 2000
NAME  = 'U235' 'U238' 'N' 'O'
RO    =

*FUEL
4.549E-02   2.560E-03  0. 0.

*AIR
0. 0. 4.325E-05  1.081E-05
END

end
=lava
-1$$  170000
0$$  30 50 18 19
1$$  2 299 4 77 375 227 0 -1 1 t
2$$  1000 2000
3$$  f5
4$$  1000 2000
5$$  1 1452 27 1018
7**

2.00000E+07 1.86182E+07 1.73318E+07 1.61343E+07 1.50195E+07 1.39818E+07
1.30158E+07 1.21165E+07 1.12793E+07 1.05000E+07 9.69341E+06 8.94878E+06
8.26136E+06 7.62674E+06 7.04087E+06 6.50000E+06 5.99475E+06 5.52878E+06
5.09902E+06 4.70267E+06 4.33713E+06 4.00000E+06 3.69862E+06 3.41995E+06
3.16228E+06 2.92402E+06 2.70371E+06 2.50000E+06 2.32522E+06 2.16265E+06
2.01146E+06 1.87083E+06 1.74003E+06 1.61838E+06 1.50524E+06 1.40000E+06
1.30541E+06 1.21722E+06 1.13498E+06 1.05830E+06 9.86800E+05 9.20131E+05
8.57965E+05 8.00000E+05 7.40700E+05 6.85795E+05 6.34961E+05 5.87894E+05
5.44316E+05 5.03968E+05 4.66612E+05 4.32024E+05 4.00000E+05 3.70350E+05
3.42898E+05 3.17480E+05 2.93947E+05 2.72158E+05 2.51984E+05 2.33306E+05
2.16012E+05 2.00000E+05 1.85175E+05 1.71449E+05 1.58740E+05 1.46974E+05
1.36079E+05 1.25992E+05 1.16653E+05 1.08006E+05 1.00000E+05 9.38042E+04
8.79923E+04 8.25404E+04 7.74264E+04 7.26292E+04 6.81292E+04 6.39081E+04
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5.99484E+04 5.62341E+04 5.27500E+04 4.94817E+04 4.64159E+04 4.35401E+04
4.08424E+04 3.83119E+04 3.59381E+04 3.37115E+04 3.16228E+04 2.96635E+04
2.78256E+04 2.61016E+04 2.44844E+04 2.29674E+04 2.15443E+04 2.02095E+04
1.89574E+04 1.77828E+04 1.66810E+04 1.56475E+04 1.46780E+04 1.37686E+04
1.29155E+04 1.21153E+04 1.13646E+04 1.06605E+04 1.00000E+04 9.38042E+03
8.79923E+03 8.25404E+03 7.74264E+03 7.26292E+03 6.81292E+03 6.39081E+0
5.99484E+03 5.62341E+03 5.27500E+03 4.94817E+03 4.64159E+03 4.35400E+03
4.08424E+03 3.83119E+03 3.59381E+03 3.37115E+03 3.16228E+03 2.96635E+03
2.78256E+03 2.61016E+03 2.44844E+03 2.29674E+03 2.15444E+03 2.02095E+03
1.89574E+03 1.77828E+03 1.66810E+03 1.56475E+03 1.46780E+03 1.37686E+03
1.29155E+03 1.21153E+03 1.13646E+03 1.06605E+03 1.00000E+03 9.38042E+02
8.79923E+02 8.25404E+02 7.74264E+02 7.26292E+02 6.81292E+02 6.39081E+02
5.99484E+02 5.62341E+02 5.27500E+02 4.94817E+02 4.64159E+02 4.35400E+02
4.08424E+02 3.83119E+02 3.59381E+02 3.37115E+02 3.16228E+02 2.96635E+02
2.78256E+02 2.61016E+02 2.44844E+02 2.29674E+02 2.15443E+02 2.02095E+02
1.89574E+02 1.77828E+02 1.66810E+02 1.56475E+02 1.46780E+02 1.37686E+02
1.29155E+02 1.21153E+02 1.13646E+02 1.06605E+02 1.00000E+02 9.38042E+01
8.79923E+01 8.25404E+01 7.74264E+01 7.26292E+01 6.81292E+01 6.39081E+01
5.99484E+01 5.62341E+01 5.27500E+01 4.94817E+01 4.64159E+01 4.35401E+01
4.08424E+01 3.83119E+01 3.59381E+01 3.37115E+01 3.16228E+01 2.96635E+01
2.78256E+01 2.61016E+01 2.44844E+01 2.29674E+01 2.15443E+01 2.02095E+01
1.89574E+01 1.77828E+01 1.66810E+01 1.56475E+01 1.46780E+01 1.37686E+01
1.29155E+01 1.21153E+01 1.13646E+01 1.06605E+01 1.00000E+01 9.38042E+00
8.79923E+00 8.25404E+00 7.74264E+00 7.26292E+00 6.81292E+00 6.39080E+00
5.99484E+00 5.62341E+00 5.27500E+00 4.94817E+00 4.64159E+00 4.35400E+00
4.08424E+00 3.83119E+00 3.59381E+00 3.37115E+00 3.16228E+00 2.96635E+00
2.78256E+00 2.61016E+00 2.44844E+00 2.29674E+00 2.15443E+00 2.02095E+00
1.89574E+00 1.77828E+00 1.66810E+00 1.56475E+00 1.46780E+00 1.37686E+00
1.29155E+00 1.21153E+00 1.13646E+00 1.06605E+00 1.00000E+00 9.38042E-01
8.79922E-01 8.25404E-01 7.74263E-01 7.26291E-01 6.81292E-01 6.39080E-01
5.99484E-01 5.62341E-01 5.27499E-01 4.94816E-01 4.64158E-01 4.35400E-01
4.08423E-01 3.83118E-01 3.59381E-01 3.37114E-01 3.16227E-01 2.96634E-01
2.78255E-01 2.61015E-01 2.44843E-01 2.29673E-01 2.15443E-01 1.89573E-01
1.66810E-01 1.46780E-01 1.29155E-01 1.13646E-01 1.00000E-01 8.25404E-02
6.81292E-02 5.62341E-02 4.64159E-02 3.83119E-02 3.16228E-02 2.61016E-02
2.15444E-02 1.77828E-02 1.46780E-02 1.21153E-02 1.00000E-02 6.81292E-03
4.64158E-03 3.16227E-03 2.15443E-03 1.00000E-03 1.00000E-04 1.00000E-05

9$$  f0 t
end
#sc_bin
50
51

end
=kenova
benchm4-01.
read param
tme=3000
lib=51
gen=1000
npg=125
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nsk=0
lng=2000000
nb8=4000
rnd=100010001
fdn=yes
mkp=yes
run=yes
plt=no
end param
read mixt
sct=3
eps=1.
mix= 1  1000 1.
mix= 2  2000 1.
end mixt
read geometry
unit 1
sphere 1 1 8.71
cuboid 2 1 6p40.
unit 2
sphere 1 1 10.
cuboid 2 1 6p40.
unit 3
sphere 1 1 8.71
cuboid 2 1 6p40.
unit 4
sphere 1 1 8.71
cuboid 2 1 6p40.
end geometry
read array
gbl=1 ara=1 nux=5 nuy=5 nuz=1
fill 1 11R4 2 11R4 3 end fill

end array
read start
nst=6
nxs=1 nys=1 nzs=1 tfx=0. tfy=0. tfz=0. lnu=101
nxs=2 nys=1 nzs=1 tfx=0. tfy=0. tfz=0. lnu=102
nxs=3 nys=1 nzs=1 tfx=0. tfy=0. tfz=0. lnu=103
nxs=4 nys=1 nzs=1 tfx=0. tfy=0. tfz=0. lnu=104
nxs=5 nys=1 nzs=1 tfx=0. tfy=0. tfz=0. lnu=105
nxs=1 nys=2 nzs=1 tfx=0. tfy=0. tfz=0. lnu=106
nxs=2 nys=2 nzs=1 tfx=0. tfy=0. tfz=0. lnu=107
nxs=3 nys=2 nzs=1 tfx=0. tfy=0. tfz=0. lnu=108
nxs=4 nys=2 nzs=1 tfx=0. tfy=0. tfz=0. lnu=109
nxs=5 nys=2 nzs=1 tfx=0. tfy=0. tfz=0. lnu=110
nxs=1 nys=3 nzs=1 tfx=0. tfy=0. tfz=0. lnu=111
nxs=2 nys=3 nzs=1 tfx=0. tfy=0. tfz=0. lnu=112
nxs=3 nys=3 nzs=1 tfx=0. tfy=0. tfz=0. lnu=113
nxs=4 nys=3 nzs=1 tfx=0. tfy=0. tfz=0. lnu=114
nxs=5 nys=3 nzs=1 tfx=0. tfy=0. tfz=0. lnu=115
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nxs=1 nys=4 nzs=1 tfx=0. tfy=0. tfz=0. lnu=116
nxs=2 nys=4 nzs=1 tfx=0. tfy=0. tfz=0. lnu=117
nxs=3 nys=4 nzs=1 tfx=0. tfy=0. tfz=0. lnu=118
nxs=4 nys=4 nzs=1 tfx=0. tfy=0. tfz=0. lnu=119
nxs=5 nys=4 nzs=1 tfx=0. tfy=0. tfz=0. lnu=120
nxs=1 nys=5 nzs=1 tfx=0. tfy=0. tfz=0. lnu=121
nxs=2 nys=5 nzs=1 tfx=0. tfy=0. tfz=0. lnu=122
nxs=3 nys=5 nzs=1 tfx=0. tfy=0. tfz=0. lnu=123
nxs=4 nys=5 nzs=1 tfx=0. tfy=0. tfz=0. lnu=124
nxs=5 nys=5 nzs=1 tfx=0. tfy=0. tfz=0. lnu=125

end start
read plot
scr=yes
lpi=10
ttl='x-y plot'
pic=mix
xul= -40.  yul= 40.    zul=0.
xlr= 40.  ylr=-40.    zlr=0.
uax=1.0 vdn=-1.0
nax=800 end
end plot
end data
end

IRSN / MORET

Reseau de 5x5x1 spheres d'uranium tres enrichi, distance de 80 cm
* 5 x 5 x 1 spheres
MINI 1000 SIGI 0.1 SIGE 0.1 PAS 1
NOBIL
GEOM
*     BOITE EXTERIEUR    AIR
TYPE 1 BOIT 180. 180. 20. VOLU   26   0    1    1    0.0   0.0  0.0
RBOIT 0. 0. 0. 0. 0. 0.
* sphere  rayon 8.71 cm
TYPE 2 SPHE 8.71

VOLU 1 26 2 2 -160.0 160.0 0.
VOLU 2 26 2 2 -160.0 80.0 0.
VOLU 3 26 2 2 -160.0 0.0 0.
VOLU 4 26 2 2 -160.0 -80.0 0.
VOLU 5 26 2 2 -160.0 -160.0 0.
VOLU 6 26 2 2 -80.0 160.0 0.
VOLU 7 26 2 2 -80.0 80.0 0.
VOLU 8 26 2 2 -80.0 0.0 0.
VOLU 9 26 2 2 -80.0 -80.0 0.
VOLU 10 26 2 2 -80.0 -160.0 0.
VOLU 11 26 2 2 0.0 160.0 0.
VOLU 12 26 2 2 0.0 80.0 0.

*
* sphere centrale rayon 10 cm
TYPE 3 SPHE 10.         VOLU   13   26    3    2    0.0      0.0  0.
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*
VOLU 14 26 2 2 0.0 -80.0 0.
VOLU 15 26 2 2 0.0 -160.0 0.
VOLU 16 26 2 2 80.0 160.0 0.
VOLU 17 26 2 2 80.0 80.0 0.
VOLU 18 26 2 2 80.0 0.0 0.
VOLU 19 26 2 2 80.0 -80.0 0.
VOLU 20 26 2 2 80.0 -160.0 0.
VOLU 21 26 2 2 160.0 160.0 0.
VOLU 22 26 2 2 160.0 80.0 0.
VOLU 23 26 2 2 160.0 0.0 0.
VOLU 24 26 2 2 160.0 -80.0 0.
VOLU 25 26 2 2 160.0 -160.0 0.

FING
CHIMIE MACRO 1 1 AIR 1

MICRO 1 2       U235      U238
CONC   0.04549   0.00256

FINC
SOURCE  NRES  POINT 100 5 -160. -160. 0.

SUNI   25
FINS
ALEA 1
SIMU

NATU
DEBU 0
*   matrice
MATR 4

1  13
4  8  12  14  18
4  7   9  17  19
16 1   2   3   4  5  6  10 11 15  16  20 21 22 23 24 25

FSIM
FIND

JNC / KENO

=csas25   parm=size=1000000
source convergence test 4 (case1)
27groupndf4  infhommedium
'High enriched uranium metal
u-235    1  0  4.549-2  end
u-238    1  0  2.560-3  end
'Air
n        2  0  4.3250-5  end
o        2  0  1.0810-5  end
end comp
test 4 (case1) geometry
read parm  rnd=94b119fb92c3   tme=300
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gen=11000  npg=10000 nsk=1000 plt=no far=yes gas=no
end parm
read geometry
unit 1
com='position(1,1)'
sphere    1 1  8.71
cuboid    2 1  40.0  -80.0   40.0  -80.0   80.0  -80.0
unit 2
com='position(1,2)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   40.0  -80.0   80.0  -80.0
unit 3
com='position(1,3)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   40.0  -80.0   80.0  -80.0
unit 4
com='position(1,4)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   40.0  -80.0   80.0  -80.0
unit 5
com='position(1,5)'
sphere    1 1  8.71
cuboid    2 1  80.0  -40.0   40.0  -80.0   80.0  -80.0
unit 6
com='position(2,1)'
sphere    1 1  8.71
cuboid    2 1  40.0  -80.0   40.0  -40.0   80.0  -80.0
unit 7
com='position(2,2)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   40.0  -40.0   80.0  -80.0
unit 8
com='position(2,3)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   40.0  -40.0   80.0  -80.0
unit 9
com='position(2,4)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   40.0  -40.0   80.0  -80.0
unit 10
com='position(2,5)'
sphere    1 1  8.71
cuboid    2 1  80.0  -40.0   40.0  -40.0   80.0  -80.0
unit 11
com='position(3,1)'
sphere    1 1  8.71
cuboid    2 1  40.0  -80.0   40.0  -40.0   80.0  -80.0
unit 12
com='position(3,2)'
sphere    1 1  8.71
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cuboid    2 1  40.0  -40.0   40.0  -40.0   80.0  -80.0
unit 13
com='position(3,3)'
sphere    1 1  10.0
cuboid    2 1  40.0  -40.0   40.0  -40.0   80.0  -80.0
unit 14
com='position(3,4)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   40.0  -40.0   80.0  -80.0
unit 15
com='position(3,5)'
sphere    1 1  8.71
cuboid    2 1  80.0  -40.0   40.0  -40.0   80.0  -80.0
unit 16
com='position(4,1)'
sphere    1 1  8.71
cuboid    2 1  40.0  -80.0   40.0  -40.0   80.0  -80.0
unit 17
com='position(4,2)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   40.0  -40.0   80.0  -80.0
unit 18
com='position(4,3)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   40.0  -40.0   80.0  -80.0
unit 19
com='position(4,4)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   40.0  -40.0   80.0  -80.0
unit 20
com='position(4,5)'
sphere    1 1  8.71
cuboid    2 1  80.0  -40.0   40.0  -40.0   80.0  -80.0
unit 21
com='position(5,1)'
sphere    1 1  8.71
cuboid    2 1  40.0  -80.0   80.0  -40.0   80.0  -80.0
unit 22
com='position(5,2)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   80.0  -40.0   80.0  -80.0
unit 23
com='position(5,3)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   80.0  -40.0   80.0  -80.0
unit 24
com='position(5,4)'
sphere    1 1  8.71
cuboid    2 1  40.0  -40.0   80.0  -40.0   80.0  -80.0
unit 25
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com='position(5,5)'
sphere    1 1  8.71
cuboid    2 1  80.0  -40.0   80.0  -40.0   80.0  -80.0
global unit 30
array 1  0.0  0.0  0.0
cuboid    0 1  480.0  0.0   480.0  0.0   160.0  0.0
end geometry
read array
gbl=1 ara=1 nux=5 nuy=5 nuz=1 fill

1  2  3  4  5
6  7  8  9 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25 end fill

end array
read start
nst=2
nxs=3 nys=3 nzs=1 fct=0.90
psp=yes
end start
end data
end

LANL / MCNP

OECD/NEA Source Convergence Test 4:Array of Interacting Spheres
c case = 1
c
c Test defined by Jacquet (IPSN/DPEA/SEC)
c Implemented for MCNP by R.C.Little (June 2001)
c
c Case 1,4,7,...298: 0 skipped generations
c Case 2,5,8,...299: 200 skipped generations
c Case 3,6,9,...300: 400 skipped generations
c
c There are 100 replicas for each number of skipped generations
c The initial random number is chosen to be (N*1000)+1
c
c Case: 1
c Skipped Generations: 0
c Total Generations: 1000
c Initial Random Number: 1001
c
c Cell Cards
c
c cells 1-25 are the spheres of uranium metal
c 1-12 and 14-25 are radius 8.71 cm
c 13 has radius of 10.0 cm
1 1 .04805 -1
2 1 .04805 -2
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3 1 .04805 -3
4 1 .04805 -4
5 1 .04805 -5
6 1 .04805 -6
7 1 .04805 -7
8 1 .04805 -8
9 1 .04805 -9
10 1 .04805 -10
11 1 .04805 -11
12 1 .04805 -12
13 1 .04805 -13
14 1 .04805 -14
15 1 .04805 -15
16 1 .04805 -16
17 1 .04805 -17
18 1 .04805 -18
19 1 .04805 -19
20 1 .04805 -20
21 1 .04805 -21
22 1 .04805 -22
23 1 .04805 -23
24 1 .04805 -24
25 1 .04805 -25
c
c Air -- Inside Box; Outside Spheres
26 2 5.406e-05 26 -27 28 -29 30 -31 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
c
c External World (void)
27 0 -26:27:-28:29:-30:31

c
c Surface Cards
c
c 24 Small Spheres (surfaces 1-12; 14-25)
c 1 Large Sphere (surface 13)
1 s 80 80 0 8.71
2 s 160 80 0 8.71
3 s 240 80 0 8.71
4 s 320 80 0 8.71
5 s 400 80 0 8.71
6 s 80 160 0 8.71
7 s 160 160 0 8.71
8 s 240 160 0 8.71
9 s 320 160 0 8.71
10 s 400 160 0 8.71
11 s 80 240 0 8.71
12 s 160 240 0 8.71
13 s 240 240 0 10.0
14 s 320 240 0 8.71

126



15 s 400 240 0 8.71
16 s 80 320 0 8.71
17 s 160 320 0 8.71
18 s 240 320 0 8.71
19 s 320 320 0 8.71
20 s 400 320 0 8.71
21 s 80 400 0 8.71
22 s 160 400 0 8.71
23 s 240 400 0 8.71
24 s 320 400 0 8.71
25 s 400 400 0 8.71
c
c 6 Planes to Bound Box of Air
26 px 0
27 px 480
28 py 0
29 py 480
30 pz -80
31 pz 80

c
c Material Cards
c
c M1 - Highly Enriched Uranium Metal
m1 92235 .04549 92238 2.56e-03
c
c M2 - Air
m2 7014 4.325e-05 8016 1.081e-05
c
c Miscellaneous Cards
c
mode n
imp:n 1 25r 0
print 130
dbcn 1001
c
c I chose *not* to print out cumulative source distribution at each cycle
c prdmp 1
c
c KCODE Cards
c
c 125 neutrons per cycle
c initial distribution:
c 101 neutrons in center of sphere # 1
c 1 neutron in center of each of the other 24 spheres
c initial keff estimate of 1.11 is from preliminary calculations
kcode 125 1.11 0 1000
ksrc 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0

80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
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80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 80 0 80 80 0 80 80 0 80 80 0 80 80 0
80 160 0 80 240 0 80 320 0 80 400 0
160 80 0 160 160 0 160 240 0 160 320 0 160 400 0
240 80 0 240 160 0 240 240 0 240 320 0 240 400 0
320 80 0 320 160 0 320 240 0 320 320 0 320 400 0
400 80 0 400 160 0 400 240 0 400 320 0 400 400 0

c
c tally cards
c
c f4:n neutron flux tally in each of the 25 spheres
c multiply the flux tally by the fission cross section (fm -6)
c to get fission fractions in each sphere
c
f4:n 1 23i 25

fm4 -1 1 -

ORNL / KENO

=csas25      parm=(size=1000000)
test 4 - case 1
238group    infhommedium
u-235     1 0 4.549-2 300 end u-235
u-238     1 0 2.560-3 300 end u-238
n         2 0 4.325-5 300 end n
o         2 0 1.081-5 300 end o
end comp
test 4 - case 1
read parm nb8=500 nsk=000 gen=1000 fdn=yes

rnd=100010001 npg=125 wrs=31 end parm
read geom

unit 1
sphere  1 1 8.71
cuboid  2 1 6p40
unit 2
sphere  1 1 8.71
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cuboid  2 1 6p40
unit 3
sphere  1 1 8.71
cuboid  2 1 6p40
unit 4
sphere  1 1 8.71
cuboid  2 1 6p40
unit 5
sphere  1 1 8.71
cuboid  2 1 6p40
unit 6
sphere  1 1 8.71
cuboid  2 1 6p40
unit 7
sphere  1 1 8.71
cuboid  2 1 6p40
unit 8
sphere  1 1 8.71
cuboid  2 1 6p40
unit 9
sphere  1 1 8.71
cuboid  2 1 6p40
unit 10
sphere  1 1 8.71
cuboid  2 1 6p40
unit 11
sphere  1 1 8.71
cuboid  2 1 6p40
unit 12
sphere  1 1 8.71
cuboid  2 1 6p40
unit 13
sphere  1 1 10
cuboid  2 1 6p40
unit 14
sphere  1 1 8.71
cuboid  2 1 6p40
unit 15
sphere  1 1 8.71
cuboid  2 1 6p40
unit 16
sphere  1 1 8.71
cuboid  2 1 6p40
unit 17
sphere  1 1 8.71
cuboid  2 1 6p40
unit 18
sphere  1 1 8.71
cuboid  2 1 6p40
unit 19
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sphere  1 1 8.71
cuboid  2 1 6p40
unit 20
sphere  1 1 8.71
cuboid  2 1 6p40
unit 21
sphere  1 1 8.71
cuboid  2 1 6p40
unit 22
sphere  1 1 8.71
cuboid  2 1 6p40
unit 23
sphere  1 1 8.71
cuboid  2 1 6p40
unit 24
sphere  1 1 8.71
cuboid  2 1 6p40
unit 25
sphere  1 1 8.71
cuboid  2 1 6p40

end geom
read array

gbl=1 ara=1 nux=5 nuy=5 nuz=1 fill 23i1 25 end fill
end array
read start

nst=6  ps6=no
nxs=1 nys=1 nzs=1 tfx=0 tfy=0 tfz=0 lnu=101
nxs=2 nys=1 nzs=1 tfx=0 tfy=0 tfz=0 lnu=102
nxs=3 nys=1 nzs=1 tfx=0 tfy=0 tfz=0 lnu=103
nxs=4 nys=1 nzs=1 tfx=0 tfy=0 tfz=0 lnu=104
nxs=5 nys=1 nzs=1 tfx=0 tfy=0 tfz=0 lnu=105
nxs=1 nys=2 nzs=1 tfx=0 tfy=0 tfz=0 lnu=106
nxs=2 nys=2 nzs=1 tfx=0 tfy=0 tfz=0 lnu=107
nxs=3 nys=2 nzs=1 tfx=0 tfy=0 tfz=0 lnu=108
nxs=4 nys=2 nzs=1 tfx=0 tfy=0 tfz=0 lnu=109
nxs=5 nys=2 nzs=1 tfx=0 tfy=0 tfz=0 lnu=110
nxs=1 nys=3 nzs=1 tfx=0 tfy=0 tfz=0 lnu=111
nxs=2 nys=3 nzs=1 tfx=0 tfy=0 tfz=0 lnu=112
nxs=3 nys=3 nzs=1 tfx=0 tfy=0 tfz=0 lnu=113
nxs=4 nys=3 nzs=1 tfx=0 tfy=0 tfz=0 lnu=114
nxs=5 nys=3 nzs=1 tfx=0 tfy=0 tfz=0 lnu=115
nxs=1 nys=4 nzs=1 tfx=0 tfy=0 tfz=0 lnu=116
nxs=2 nys=4 nzs=1 tfx=0 tfy=0 tfz=0 lnu=117
nxs=3 nys=4 nzs=1 tfx=0 tfy=0 tfz=0 lnu=118
nxs=4 nys=4 nzs=1 tfx=0 tfy=0 tfz=0 lnu=119
nxs=5 nys=4 nzs=1 tfx=0 tfy=0 tfz=0 lnu=120
nxs=1 nys=5 nzs=1 tfx=0 tfy=0 tfz=0 lnu=121
nxs=2 nys=5 nzs=1 tfx=0 tfy=0 tfz=0 lnu=122
nxs=3 nys=5 nzs=1 tfx=0 tfy=0 tfz=0 lnu=123
nxs=4 nys=5 nzs=1 tfx=0 tfy=0 tfz=0 lnu=124
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nxs=5 nys=5 nzs=1 tfx=0 tfy=0 tfz=0 lnu=125
end start
read mixt   sct=3 eps=1   end mixt
end data
end
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Appendix 5.b

COMMENTS

EMS (Dennis Mennerdahl)

Convergence of fission fractions in all units is not necessarily required for convergence of keff.
However, convergence of fission fractions in the larger unit in the center is vital in this problem.

The system includes unmoderated and unreflected fissionable material. The number of collisions
of an average neutron after fission is very low compared with a moderated and reflected system. To get
acceptable statistics, it is well known to criticality safety specialists that more neutron histories are
required than for moderated and reflected systems. The extra calculation time needed for more neutron
histories is compensated with the reduced number of collisions.

The statistics obtained from the postulated input for this test series are not very good. A poor initial
neutron source distribution slows convergence. In most cases, after skipping the first 50 000 neutrons,
the following 125 000 “active” neutrons result in reasonable values of keff and fission fraction for the
central unit. In a typical validation of a method, it is likely that a good value would be reported.
However, as can be seen in several cases, some of the values are significantly in error, much more than
what the standard deviation indicates. A bad start (a specific random number together with the chosen
start distribution) takes a long time to recover. This can be seen from results using the same random
number seed but with different numbers of neutrons skipped.

The statistical uncertainties for the fission fractions are very large for the locations (1,1) and (5,5).
KENOVa gives the uncertainty as a percentage. Since the fission rates include many generations before
the fission distribution has converged, the uncertainties are even more unreliable than the fission rates.
For the smaller units in locations (1,1) and (5,5), the uncertainties given by KENOVa grow
considerably when the number of skipped generations is increased. For the large unit in location (3,3)
the reverse is noted.

For the best model (400 generations skipped) the uncertainties vary between 9 and 100 percent for
location (1,1). When no generations are skipped, while keeping the active generations to 1 000, the
variation is reduced to between 3 and 22 per cent. This is clearly misleading. For the location (5,5) the
trend is not so clear. The uncertainties are always large for this location. For the large central unit in
location (3,3), the cases when 400 generations are skipped result in the smallest uncertainties. A few
calculations resulted in an uncertainty larger than 1 (maximum 1.75) per cent, but most gave less than
0.5 per cent uncertainty. Not surprisingly, the cases with the largest fission rate uncertainties in the
central unit correspond to those giving the lowest values of keff.

Source convergence related to fission fractions could be defined as a fixed limit below which the
fission fraction deviation is acceptable. It is clear that source convergence related to keff and to
criticality safety does not necessarily require source convergence related to fission rates in every part
of the fissionable material. Source convergence related to keff is difficult to define without knowing the
correct result. The correct result can be estimated using a combination of good understanding of the
physics of the problem, understanding of the causes of slow convergence, results from calculations
using simplified models, etc.

Selection of random number seeds

The input random seed is a 12 digit hexadecimal number. An initial seed of 000000000000 was
selected (not a random choice). To get 100 different seeds, the previous seed was modified by changing
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one or a few figures in various positions. The random number seeds are given in the previous tables. It
turned out that several of the first selection of seeds generated identical random number sequences.
New seeds were selected to replace those duplicated sequences. Later, Lester Petrie from ORNL
informed me how the random number seed works on a PC. The 12-figure input seed is actually divided
into three 4-figure seeds added together. A 1 in the last position of each 4-figure number is changed into
a 0. This is something that I had already observed, but I was pleased to hear that it was a known design
“feature”.

Another observation is that a random number seed given in the KENOVa input gives different
random number sequences depending on the SCALE sequence in which KENOVa is run. If CSAS25
is used with a random number given in the parameter input for KENOVa, the result will be different
than if the same code modules were run separately, ending with a KENOVa run. I only generated the
cross sections once and saved them in an ICE-format for later KENOVa use. The memory use of
KENOVa is smaller in this case since the cross section mixing requires more direct access data blocks.
The major purpose is however to save time. Three hundred cases can use the same cross section subset
instead of preparing new (but identical) cross sections for each case.

LANL (Robert C. Little)

Description of Calculations

All calculations were performed with MCNP4C2 (load date 01/20/01) on a SUN Ultra 80. Cross
sections are all from the ENDF60 library, which is based on ENDF/B-VI Release 2. MCNP ZAID
identifiers are 7014.60c, 8016.60c, 92235.60c and 92238.60c.

Bounding planes were specified in each dimension at 80 cm perpendicular from the center of the
exterior spheres. Neutrons crossing these surfaces were killed. For replica N (N=1,100), the starting
random number was chosen to be 1000 * N + 1. The quantity neutron flux times fission cross section
times material number density was tallied in each of the 25 spheres. The tally is calculated over all
active cycles, not for each individual cycle.

Required Output

The required output for each case is part of the test specification. For each of the 300 cases we
produced a simple text file with this output. The text files were combined to form one continuous text
file and were transmitted electronically to Olivier Jacquet.

The first 12 lines of results for each case include the case number, some summary description, and
contact information. The next 4 lines provide the number of skipped generations, the number of active
generations, the number of histories per generation, and the number of generations per superhistory. For
MCNP this latter quantity is always 1. The next two lines contain the final keff estimate and the one
standard deviation absolute (not relative) uncertainty. The values reported here are from the MCNP
combined collision / absorption / track-length estimator. For readability we then skip a line. Then we
report the individual keff estimate for each cycle. For these results we use the MCNP collision estimator.
Results are reported for each cycle (inactive or active). We then include another blank line. Finally we
report the cumulative fission fraction in each of the 25 uranium spheres. The fractions are derived from
the tallies described above multiplied by the cell volumes. The first entry is for sphere 1 (the sphere
that dominates the original source distribution), the 13th entry is for the central sphere, etc. These values
are cumulative over all active generations and are normalised to 1.
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Reference Calculations

To provide a reference result for comparison purposes, an extended calculation was performed. In
this case, the initial source was specified to be equal in each of the 25 spheres. 10 000 histories per
cycle were simulated. We skipped 1 000 cycles and calculated a total of 6 000 cycles. Therefore we had
50 million active histories in this run. The final combined collision / absorption / track-length estimate
of keff was 1.11294 with a one sigma absolute standard deviation of 0.00009.

We also have performed eigenvalue calculations for isolated spheres, with radii of 10.0 cm and
8.71 cm. For these runs, all neutrons leaking from the sphere were terminated. We ran 5 000 histories
per cycle, skipped 500 cycles, and calculated a total of 2 500 cycles (10 M active histories). The initial
source was simply a point in the center of the sphere. For the 10.0-cm sphere, the keff was 1.11233 with
a one-sigma absolute standard deviation of 0.00019, and for the 8.71-cm sphere, the keff was 0.99519
with a one-sigma absolute standard deviation of 0.00019.

Eigenvalue Results

The table below provides some summary information for the eigenvalues for each of the 3 cases.
Typical standard deviations reported by MCNP for the individual runs were ~ 0.002. The mean and
standard deviation of the mean were calculated from the 100 replica results using the standard formulas
that weight the contributions based on the individual uncertainties. The population estimated standard
deviation of the mean is calculated from the observed scatter of the population of replica eigenvalues.
The ratio of the two standard deviations gives some indication of the Monte Carlo underestimation of
the individual eigenvalue uncertainties (assuming, of course, unbiased results).

We have also analyzed the eigenvalue results for each case with respect to the reference value
provided above. The deleterious impact of skipping too few cycles is particularly clear in the following
table where we provide the percent of replicas for each case that lie within various multiples of a
standard deviation from the reference result.

If we compare the magnitude of the replica eigenvalues to the reference result, we find that even
when skipping 400 cycles, there is clearly an underestimation of the eigenvalue. It has not been
determined from this work how many cycles would need to be skipped for unbiased results (given the
unrealistically poor initial source guess).

Case Skipped Cycles > 5 SD 4-5 SD 3-4 SD 2-3 SD 1-2 SD < 1 SD 
1 0 74 9 3 8 4 2 
2 200 24 4 6 12 24 30 
3 400 3 2 3 14 36 42 

Case Minimum 
keff

Maximum 
keff

Mean
keff

Standard
Deviation of the 

Mean

Population Estimated 
Standard Deviation of the 

Mean

Ratio

1 0 1.05756 1.11291 1.09399 0.000218 0.001433 6.6 
2 200 1.07862 1.11667 1.10738 0.000195 0.000909 4.7 
3 400 1.09798 1.11779 1.11094 0.000188 0.000317 1.7 

Skipped
Cycles 
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MCNP performs several statistical checks on the eigenvalue results and warns the user if the
statistical checks fail in some manner. In these calculations, 3 main warning messages arose. The first
is “The cycle values do not appear normally distributed at the 99% confidence level.” This check is
performed for each of the 3 estimators: collision, absorption, and track length. The second warning was
“The first and second half values of the combined estimator appear to be different at the 99%
confidence level.” The third is a warning that “There appears to be an {increasing / decreasing} trend
in the combined estimator over the last 10 cycles.” The percent of the replica runs for each case
flagging these warning messages is indicated in the next Table.

For Case 1, three of the replicas flagged the warning about “cycle values not normally distributed”
for each of the three individual estimators. When this happens, MCNP draws attention to the fact by
not printing “boxed” results for the final keff. The combined estimators for these 3 runs were 1.06226,
1.07231, and 1.07909. These are some of the worst, but certainly not the absolute worst, keff estimates.
On the other hand, for the 15 replicas of case 1 with no MCNP eigenvalue warnings, the average keff is
1.10704, not great compared to the reference calculation, but much closer than the typical Case 1
replica.

Fission Fractions

We will first present fission fraction results from the reference calculation described above. It
should be noted, however, that an even longer run is likely necessary to provide true reference fission
fractions. Nevertheless, results are given in the following table.

MCNP errors reported for the number of fissions in each cell are clearly underestimated, likely by
a factor of up to several for the outer spheres. We have not as yet analyzed these data however.

Symmetric Cell ID Number of Cells Cells Average Fission Fraction Per Cell 
1 1 13 0.910624 
2 4 8, 12, 14, 18 0.011157 
3 4 7, 9, 17, 19 0.005783 
4 8 2, 4, 6, 10, 16, 20, 22, 24 0.002344 
5 4 3, 11, 15, 23 0.000463 
6 4 1, 5, 21, 25 0.000254 

Case Skipped 
Cycles 

Cycle Values Not 
Normally Distributed 

First Half / Second 
Half Different 

Trend in Last 
10 Cycles  

At Least One 
Warning Message 

1 0 21 81 6 85 
2 200 5 35 1 37 
3 400 3 13 0 16 

Case Skipped 
Cycles 

Percent of Replicas with keff< Reference 
Value

Percent of Replicas with keff > Reference 
Value

1 0 100 0 
2 200 88 12 
3 400 80 20 
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The next table provides the average fission fraction over all replicas for each case in 3 specific
cells: cell 1, with the artificially high initial source; cell 13, the central sphere; and cell 25, the cell
symmetric to cell 1 but all the way on the other side of the array (note that cell 25 also has an artificially
high initial source representation, although not nearly as high as cell 1). The reference values from the
above table are included for comparison purposes. Once more, we are able to conclude that, using the
source specified, skipping 400 cycles is not enough for this problem to be converged. It is also noted
that MCNP’s statistical checks flagged a trend problem in the fission tallies for each of the 100 replicas
in Case 1.

Case Skipped 
Cycles 

Cell 1 Average Fission 
Fraction

Cell 13 Average Fission 
Fraction

Cell 25 Average Fission 
Fraction

1 0 0.089250 0.739715 0.001633 
2 200 0.012845 0.862278 0.000655 
3 400 0.004325 0.900642 0.000377 

Ref  0.000254 0.910624 0.000254 
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Appendix 5.c

FINAL KEFF

On each figure, the horizontal line corresponds to the reference keff determined by the contributor.
The keff value for each replica is given with one standard deviation uncertainty, computed by the code.

ANL / VIM
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Appendix 5.d

FINAL FISSION FRACTION OF CENTRAL SPHERE

On each figure, the horizontal line corresponds to the reference fission fraction of the central
sphere determined by the contributor. The fission fractions are given with one standard deviation
uncertainty, computed by the code, when this information is available.
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Appendix 5.e

STATIONARITY DETECTION

Basic idea about stationarity

(ki) : a cycle keff series of length N

What is the behaviour of when j varies between 1 and N?

If (ki) is stationary, this variable should take “small” values around 0.

Brownian bridge

Link between stationarity and Brownian bridge

Let introduce: 

the autocorrelations of a stationary series (ki):

i i hh cov k ,k

the variance of the mean: 
j 1

j
h ( j 1)

h1
var k 1 h

j j

the parameter :

2
j

j
h

lim j var k h

A Brownian bridge is a centered gaussian process 
verifying the following properties: 

N NB 0 B 1 0

NE B t 0    ( 0 t 1)

Nva r B t t 1 t  ( 0 t 1)

The probability that it takes high values is low.  
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Let define the following process:

If (ki) is a stationary series, BN verifies the two following properties:

If N is high enough, for most j values (j sufficiently high): Then, for most j values, BN
verifies the third property of a Brownian bridge:

As a conclusion, if (ki) is stationary and if N is high enough, BN tends to a Brownian bridge.

Example of a stationary series
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Example of a non-stationary series (negative transient, i.e. initial underestimation)

Example of a parametric test to detect stationarity

The tests proposed by Schruben [1] to detect a negative transient (i.e. an initial underestimation)
or a positive transient (i.e. an initial overestimation) are based respectively on the statistics:

where t* and t*are respectively the values at which the negative and positive peaks of BN

occur.

If BN is a Brownian bridge, S* and S*are distributed as a chi-square with 3 degrees of freedom.
The p-value of these tests (i.e. the probability of getting a value more extreme than the statistic under
the H0 hypothesis of stationarity) is:

with S beingS* or S*.

If α denotes the level of significance of the test (for instance α = 5%), the null hypothesis of the
test (the cycle keff series is stationary) is rejected if p < α.

The disadvantage of the Schruben test is the necessity to estimate the parameter τ 

A reliable estimate of this parameter is difficult to obtain 

in the presence of an initialisation bias!
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Examples of non parametric tests to detect stationarity

Modification of the Schruben test

To avoid the estimation of the parameter τ , we can eliminate this parameter by using the statistic S:

The distribution of S (and consequently the p-value of the test) is not analytically known but can be
determined empirically (by simulating a large number of Brownian bridges and estimating the statistic
S for each of them).

Vassilacopoulos test [1]

The sequence RN of the signed ranks of the cycle keff series is defined as follows:

The process UN is the cumulative sums of the ranks RN:

The tests proposed by Vassilacopoulos to detect a negative transient or a positive transient are based
respectively on the statistics:

The p-value of these tests is (i.e. the probability to exceed the statistic of the test under the H0
hypothesis of stationarity):

with C being Cmin or Cmax.

If α denotes the level of significance of the test, the null hypothesis of the test (the cycle keff series is
stationary) is rejected if p < α.
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Appendix 5.f

LENGTH OF THE TRANSIENT AUTOMATICALLY SUPPRESSED

Number of active cycles removed until detection of stationarity for the 300 replicas (100 with 0
inactive cycles, 100 with 200 inactive cycles, 100 with 400 inactive cycles).

Table 5.f.1   Length of the transient automatically suppressed – ANL / VIM

Percentage of replicas with length of the transient 
automatically suppressed 0 inactive cycles 200 inactive cycles 400 inactive cycles 

0 13 62 81 
50 14 10 7 

100 13 5 6 
150 16 6 2 
200 11 4 0
250 10 5 1 
300 3 2 0
350 6 3 1 
400 3 0 1
450 2 2 1 
500 5 0 0 
550 2 1 0
600 0 0 0 
650 1 0 0 
700 0 0 0 
750 1 0 0 
800 0 0 0 
850 0 0 0 
900 0 0 0 
950 0 0 0 

1000 0 0 0 
 Total = 100 Total = 100 Total = 100 
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Table 5.f.2   Length of the transient automatically suppressed – EMS / KENO

Table 5.f.3   Length of the transient automatically suppressed – IPPE / KENO

Percentage of replicas with length of the transient 
automatically suppressed 0 inactive cycles 200 inactive cycles 400 inactive cycles 

0 3 64 81 
50 21 9 7 

100 15 7 3 
150 15 3 1 
200 16 6 1 
250 7 3 1 
300 4 1 1 
350 4 1 3 
400 2 1 0
450 6 0 1
500 1 1 1 
550 0 4 0
600 1 0 0 
650 1 0 0 
700 1 0 0 
750 2 0 0 
800 1 0 0 
850 0 0 0 
900 0 0 0 
950 0 0 0 

1000 0 0 0 
 Total = 100 Total = 100 Total = 100 

Percentage of replicas with length of the transient 
automatically suppressed 0 inactive cycles 200 inactive cycles 400 inactive cycles 

0 9 62 81 
50 15 7 6 

100 12 10 3 
150 17 7 1 
200 18 2 0
250 5 3 4 
300 6 3 0
350 8 1 1 
400 1 0 1
450 2 3 0
500 3 0 1
550 0 0 2
600 1 0 0 
650 2 1 0
700 0 1 0
750 1 0 0 
800 0 0 0 
850 0 0 0 
900 0 0 0 
950 0 0 0 

1000 0 0 0 
 Total = 100 Total = 100 Total = 100 
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Table 5.f.4   Length of the transient automatically suppressed – IRSN / MORET

Table 5.f.5   Length of the transient automatically suppressed – JNC / KENO

350 3 3 3 
400 1 0 0 
450 0 0 0 
500 2 1 0
550 2 0 1
600 2 1 0
650 0 0 1
700 0 1 1 
750 0 2 0
800 1 0 0 
850 1 0 0 
900 0 1 0
950 0 0 0 

1000 2 0 0 
 Total = 100 Total = 100 Total = 100 

Percentage of replicas with length of the transient 
automatically suppressed 0 inactive cycles 200 inactive cycles 400 inactive cycles 

0 10 62 80 
50 13 9 4 

100 12 10 4 
150 7 4 4 
200 20 1 1 
250 13 2 1 
300 11 3 0

Percentage of replicas with length of the transient 
automatically suppressed 0 inactive cycles 200 inactive cycles 400 inactive cycles 

0 2 53 76 
50 11 14 6 

100 20 9 4 
150 14 4 2 
200 7 3 3 
250 9 4 3 
300 12 3 1 
350 5 4 2 
400 3 2 0
450 4 1 0
500 4 0 1
550 1 2 0
600 2 0 1
650 5 0 0 
700 0 0 0 
750 1 0 0 
800 0 0 0 
850 0 1 1 
900 0 0 0 
950 0 0 0 

1000 0 0 0 
 Total = 100 Total = 100 Total = 100 
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Table 5.f.6   Length of the transient automatically suppressed – LANL / MCNP

Table 5.f.7   Length of the transient automatically suppressed – ORNL / KENO

Percentage of replicas with length of the transient 
automatically suppressed 0 inactive cycles 200 inactive cycles 400 inactive cycles 

0 4 56 83 
50 14 8 7 

100 16 13 1 
150 16 10 2 
200 8 6 1 
250 9 3 1 
300 10 1 0
350 4 0 1
400 8 2 2 
450 3 1 0
500 0 0 0 
550 3 0 0 
600 2 0 0 
650 2 0 0 
700 0 0 2
750 0 0 0 
800 1 0 0 
850 0 0 0 
900 0 0 0 
950 0 0 0 

1000 0 0 0 
 Total = 100 Total = 100 Total = 100 

Percentage of replicas with length of the transient 
automatically suppressed 0 inactive cycles 200 inactive cycles 400 inactive cycles 

0 6 57 89 
50 9 13 3 

100 16 7 5 
150 15 7 1 
200 14 4 1 
250 8 3 0
300 10 5 0
350 3 2 0
400 7 0 1
450 3 1 0
500 4 0 0 
550 0 0 0 
600 0 1 0
650 2 0 0 
700 1 0 0 
750 1 0 0 
800 0 0 0 
850 1 0 0 
900 0 0 0 
950 0 0 0 

1000 0 0 0 
 Total = 100 Total = 100 Total = 100 
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Appendix 5.g

STANDARD DEVIATION CALCULATION BASED ON THE METHOD 
PROPOSED BY UEKI ET AL.

Let consider a cycle keff series of length N.
Ueki et al. established the theoretical expression of the bias of the conventional estimation of the
variance of the mean of the cycle keff series, denoted as :

c(i) being the true autocovariance coefficients of the cycle keff series.
Ueki et al. also established the theoretical expression of the bias of the conventional estimation of the
autocovariance coefficients of the cycle keff series, denoted as , for the small values of i:

being the true variance of the mean of the cycle keff series.
An approximation of the method of Ueki et al. is to consider only the first p (p = 10) autocovariance
coefficients, assuming that the autocovariance function c(i) quickly decreases to 0 when the lag i
increases.

The method of Ueki et al. consists in iterating the estimation of the variance of the mean :

with for the first iteration and for the next iterations.
So the successive estimates of the variance of the mean with the method of Ueki et al. define a linear
recurring sequence of order 1:

with

When the number of cycle N is about a few hundreds, a is very small and the number of iterations
needed is very low: 1 or 2.

The limit l of this linear recurring sequence is determined by the equation  l = a . l + b as illustrated in
Figure 5.g.1.

2
u,0 0 ,

p 1
2p N

2p2
a

N N 1 N
 and 

p
2

i 1

2
b N i c i

N N 1
.^ ^

2 2
u,k 1 u,ka b

c (i) c (i) ^ 2^
uc (i) c (i) ^

p
2 2
u

i 1

2
N i c i

N N 1
^ ^

2
u

2

2cB i^

c i^

N 1
2

i 1

2
B N i c i

N N 1
,^

2^

180



Figure 5.g.1   Successive estimates of the variance of the mean
with the iterative method of Ueki et al.

An improvement of the method of Ueki et al. consists in estimating directly the limit l of the sequence:

One of the major difficulty of the method of Ueki et al. is the fact that can be negative !
Indeed, due to the uncertainties on the estimates of the first p autocovariance coefficients, the

corrective term can be negative and greater in absolute value than .

A modification has been made to the method of Ueki et al. consisting in decreasing the number p of
autocovariance coefficients taken into account while is negative. The initial value of p is 10.2
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Appendix 5.h

FINAL KEFF AFTER AUTOMATIC SUPPRESSION 
OF TRANSIENT ACTIVE CYCLES

On each figure, the horizontal line corresponds to the reference keff determined by the contributor.
The keff values are given with one standard deviation uncertainty (calculation detailed in Appendix 5.g).
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Appendix 5.i

DISTRIBUTION OF (KEFF – KEFF,REF) / √(STD2 + STDREF
2) AFTER AUTOMATIC

SUPPRESSION OF TRANSIENT ACTIVE CYCLES
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Chapter 6

SOURCE CONVERGENCE TEST PROBLEMS CONCLUSIONS

When a multiplying system has loosely coupled components, or many fissionable pieces, great
care is required in the performance of criticality calculations, especially Monte Carlo calculations. We
outline here a simple set of computational practices that will be of use in identifying such systems and
will help the analyst to quickly develop a robust computational strategy. Because these techniques do
not require any special algorithms or code features, they are accessible to anyone using the various
criticality safety codes available today. They are aimed at two questions the analyst must answer: (1)
Is the fission source sufficiently converged, and (2) Are the uncertainty estimates distorted by serial
correlation?

Loose coupling occurs either if the multiplying component pieces are neutronically separated or
if the system is much larger than a neutron migration length. As usual, the best defense against
misleading calculational results is a thorough understanding of the physical properties of the system.
The analyst should always inspect multiplying systems for loose coupling and undersampling effects.
In the checkerboard problem, for example, the layout suggests that the multiplying cells are nearly
isolated from each other. Moreover, if one compares the reflecting properties of water and concrete, it
will be apparent that the corner cell bounded on two sides by concrete is probably the dominant cell in
a converged calculation. This difference in reflection is well-known to experienced criticality safety
analysts, but the effect can be easily evaluated using simple calculations of a single fuel pin bundle with
the two different reflectors. 

One reliable technique is to repeat a calculation with several different initial sources, and compare
the results. For example, in test problem 2, the depleted pin cell, one should place the initial source first
in the bottom half of the problem and then in the top half. If the calculations do not converge the source,
they will produce significantly different keff values and fission distributions. If no significant
eigenvalue differences are seen, then the problem is probably symmetric or nearly so, and any non-
conservatism introduced by incomplete source convergence will be minimal. If the results do differ, the
obvious conservative strategies are to (1) increase the number of skip generations until the starting
source distribution no longer has an effect on the results, or (2) put the initial source entirely or
predominantly in the high-worth end of the pins (identified in the preliminary calculation), and
adjusting the number of skip generations.

A second technique can be used to complement the first. If there are many fissionable
components, the procedure outlined in the previous paragraph can be laborious. In stead of an
exhaustive search, one can perform a single calculation with a uniform starting source. If there are
relatively few components that will eventually dominate the fission distribution, it should be possible
to identify them. In the checkerboard problem, for example, it is clear even from the unconverged
fission source after tens of generations that the corner location will be the most reactive. Obviously, one
should try a source concentrated in location (1,3). The uniform initial source results can be used to
identify a small set of starting distributions for use in the first technique if there are several reactive
components. Care must be taken that the high-worth zones are not merely local maxima.
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Third, one can test whether changing the Monte Carlo computational control parameters changes
a supposedly converged keff or fission distribution. The simplest is to increase the number of skip
generations and/or tally generations to see if keff or the fission distribution changes significantly. If there
are many fissionable components, the number of histories per generation can be increased to check for
undersampling problems. Many codes show the evolution of the eigenvalue estimates during the
calculation, information which can be helpful but does not definitively show source convergence.

Two simple techniques can be used to assess the quality of uncertainty estimates. First, if either
batching or the superhistory method is being used, the number of generations per batch or stage can be
increased, while keeping the total number of histories tallied constant. If batching increases the
estimated uncertainties, then the original ones were probably underestimated due to serial correlation
between batches. The larger number of generations per batch should then be adopted to improve
uncertainty estimates. The second technique is to perform a set of independent calculations (replicas)
that are identical except for the random number sequence. After correcting for the increased total
number of histories included in the set of replicas, the uncertainty estimates of the ensemble of results
are compared with those from the Monte Carlo code.

Experience with the source convergence test problems also indicates that statistical tests should
be employed with caution. There are fairly simple, long- and widely-used tests in use in some codes
that are designed to detect unconverged eigenvalues or fission source distributions, but these are
outside of the scope of this report. In general, statistical tests of eigenvalue estimates are not very
sensitive. When a calculation fails such a test, it should be taken seriously, but if it passes not much
assurance should be taken. Statistical tests usually perform better on fission distributions, but they are
generally still not reliable enough to justify blind reliance on them. It is frequently the case that they
perform much better when the number of histories per generation is very large.

Better statistical tests are currently being developed and tested that show great promise. The
Shannon entropy methods [1,2] are useful partly because they provide a single number that reflects the
state of convergence of the fission distribution – a very useful property for systems with many
fissionable zones. The Brownian Bridge technique [3], by contrast, is used to detect eigenvalue drift
and to adjust the number of skip generations retroactively to limit tallies to the post-convergence
portion of the Monte Carlo calculation. 

Advanced source convergence methods are worth using in difficult problems, but are not always
effective. For example, stratified sampling and the superhistory method improve at least the probability
that the fission source will converge. In general, however, the more difficult the problems, the less
efficacious they are. Just as statistical tests are not a panacea, neither are these algorithms.

As new convergence methods and statistical tests are developed and used, they may be shown to
be sufficiently robust to guarantee convergence or to detect inadequate convergence in criticality safety
calculations, but for now they are no substitutes for sound engineering judgment, understanding the
physics of individual systems, careful application of appropriate computational techniques, and healthy
skepticism of one’s results.
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