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1 INTRODUCTION 

In this report, progress in fission source convergence in the programme of the OECD/NEA 

Expert Group on Source Convergence in Criticality Analysis is reviewed. Efforts by the 

participants in the Phase II programme have concentrated on three strategies: source iteration 

acceleration, statistical tests, and computational strategies. The efficacies of the most relevant of 

the acceleration algorithms and several statistical methods that were explored in this phase are 

described. this includes ease of use for analyists and simplicity of implementation in Monte 

Carlo codes for code developers. Computational strategies to prevent or identify source 

convergence problems are also briefly discussed. 

Fission source convergence in Monte Carlo criticality calculations has been an issue since 

the early implementations of the method[1]. In 1971, Whitesides identified a specific case 

exhibiting source distribution problems -- a 9x9x9 array of decoupled spheres[2]. In the mid-

1990s, An informal US Department of Energy Seminar on Misapplication of Monte Carlo Codes 

to Criticality Calculations highlighted the need greater care in criticality safety analyses. Since 

the 1990s, work intensified after unconverged sources influenced results for an international 

benchmark comparison [3]. This work has been carried out by members of the NEA Working 

Party on Nuclear Criticality Safety's Expert Group on Source Convergence in Criticality Analysis 

and by others.  

The first Phase of the Expert’s group was completed with the publication of its report in 

2006[4]. The work program consisted of the specification of four test problems that exhibited 

slow convergence, under-sampling, or seemingly intractable noise. It also included the analysis 

of these systems using various criticality codes and methods, and the compilation of results. 

These four and some other systems have since been used to explore the efficacy of various 

methods in addressing slow or false convergence, noise, bias, and uncertainty bias. The test 

problems are briefly described in Figures 1 – 4, and full detail is specified in Reference 4. 

To standardize comparisons between codes and methods in Phase I, the Monte Carlo 

computational parameters were specified. This made the computations unusually (and 

unrealistically) challenging so the effects of the methods would be more apparent. For example, 

test problem 4 was an undersampling problem with a dominance ratio of only 0.91  -- a 5x5x1 



widely spaced array of identical 8.71 cm radius HEU spheres, with the central one replaced with 

a (critical) 10 cm radius sphere. Only 125 histories per cycle were used. Stratified sampling and 

superhistory powering both improved the chances of source convergence in this problem, but, of 

course, the simplest approach is to use many more histories per generation than were specified 

for the test problem. One can easily estimate how many by using each fissile component's 

volume fraction and its material's neutron multiplication properties. 

Phase II was to be the collection and description of methods and techniques that can be 

useful in avoiding the pitfalls of incomplete source convergence, particularly in Monte Carlo 

criticality calculations. Furthermore, guidance on their applications to criticality calculations was 

to be provided for analysts in the field.   

Fortunately, between 2006 and today, much good work has been done in this area to 

supplement earlier efforts on the subject. Most or all of these developments were carried out 

independently by Expert Group participants. Whether this was in response to the underlying 

needs of the community or because of the Expert Group’s program, the improvements in source 

convergence tools and techniques are striking, and should contribute to more robust analyses.
 

We summarize here the aggregate work in source convergence emphasizing benefits and 

limitations of methods and techniques. It is hoped that code developers will implement the best 

of the algorithms, as well as develop better ones; and that analysts will make use of them. 

2 CONVERGENCE TESTS 

When applied to Monte Carlo calculations, stochastic fluctuations sometimes obscure the 

convergence trend signals that are normally much more apparent in deterministic calculations. It 

should be noted that the underlying slow convergence problem is not due to the Monte Carlo 

alogrithm; deterministic calculations are also subject to false convergence of source distributions 

in high dominance ratio problems.  A sample set of eigenvalue estimates from two Monte Carlo 

cases of the checkerboard fuel storage array demonstrate the noise problem in Figure 5.  

Normally, keff converges at a much earlier iteration than does the source distribution[5], so a 

converged eigenvalue may mask an unconverged source. To observe source convergence, 

however, requires some detailed arrangements for display and analysis of source statistics, 

including autocorrelation, trends, etc. When source convergence is established, the convergence 

of keff is guaranteed.  If the source has not been proven to be converged, then the analyst must 

show that keff is. An effective fission distribution convergence test is therefore useful for 

determining eigenvalue convergence even if, strictly speaking, only a converged keff  is needed. 

Naturally, the fission source must be converged if reaction rates are desired, e.g., in depletion 

calculations. 

Statistical tests commonly available to Monte Carlo users include plots of individual cycle 

keff or cumulative keff vs. cycle (with estimated errors), second half – first half keff (drift-in-mean) 

comparisons, and autocorrelation coefficient edits. Using the first test problem from Phase I, the 

checkerboard fuel storage system, several additional statistical tests were also evaluated. 

Designed for fixed source Monte Carlo problems, these are premised on the independence of 

estimates in different cycles, which is not the case in Monte Carlo criticality calculations, 



especially high-dominance ratio ones.  (They are still quite useful for fixed source calculations of 

unlikely events, however.) The Shapiro-Wilk normality test[6] was unable to detect the slow 

trend in cycle-by-cycle keff estimates common in slowly converging calculations[7].  Similarly, 

the R-test [8], and the "1/N" test[8] all proved insensitive to slowly evolving keff or reaction rate 

estimates[7].  

Additional work has been done in automated (eigenvalue) transient suppression using 

Brownian Bridge methods [9]. This is accomplished by computing all of the autocorrelation 

coefficients of keff once the Monte Carlo calculation is complete, and determining the optimal 

number of skip cycles retrospectively. This method is used in MORET4[10] to retrospectively 

select the number of skip cycles. It can work even when noise obscures an underlying trend in keff 

. It is easy to use, but it does not evaluate the evolving source distribution. 

Autocorrelation in fission source distributions, more pronounced than for eigenvalues, 

provides information for additional statistical tests. Such tests require that spatial subdomains 

unique to each system be analyzed. Identifying and specifying these subdomains might add 

modestly to code input and introduce some unreliability. Except in one of the test problems, 

these methods were a small part of the Expert Group's Phase I work. 

To date, the most promising statistical tests aimed at checking source convergence in high-

dominance-ratio Monte Carlo calculations are entropy-based informatics methods[11] that 

analyze the source distribution rather than keff. In the relative entropy method, the source 

distribution entropy is computed at the end of each cycle using a spatial mesh specifically 

established for source entropy tallies. If a uniform initial source is used, a reasonable initial mesh 

can be established automatically after the first cycle’s fission site bank is filled. Even if an 

unrealistic initial source is used, the mesh can be modified by the during subsequent cycles to 

provide the right granularity. The method is simple: it does not require modification of the 

random walk or source site selection procedure.  

It is the trend in entropy that signals source convergence, not the value of the entropy. At the 

extremes, a point source has an entropy of ln2(Ns), where Ns is the number of source entropy 

bins. A uniform source has an entropy of zero, with other cases lying in between. At the end of a 

calculation, the statistical distance of each cycle's entropy from the average second-half entropy 

is compared, and convergence is determined to occur when this distance is within statistics of 

zero. 

The entropy methods are quite easy to use -- there is only one output parameter to monitor. 

Because the entropy tally mesh can be determined automatically, there is no need for additional 

input or foreknowledge of the distribution or even of the problem geometry. It assesses the 

source distribution, so the eigenvalue convergence can be guaranteed. This is currently 

implemented in MCNP5 and MORET5[12]. 

3 ACCELERATION METHODS 

One obvious strategy for problems with slow source convergence is the acceleration of the 

outer (power) iterations. Unfortunately, most of the methods that work for deterministic transport 

calculations are difficult to implement successfully and reliably in Monte Carlo codes because of 



noise. Nevertheless, several noteworthy methods have been developed and implemented in 

Monte Carlo codes. 

One of the earliest of these, the superhistory powering method [13], was originally aimed at 

reducing the bias of the keff  estimators and the fission source distribution that stems from 

frequent fission source renormalization, but it also improves the convergence reliability of Monte 

Carlo criticality calculations [14]. In this method, a set of starters from the previous batch is 

tracked, along with their fission neutron progeny through generation N (typically 10). Only the 

last generation produces the fission sites for the next batch, so source renormalizations are less 

frequent.  

The larger number of generations between tallies reduces the autocorrelation between 

batches is reduced because each flux or reaction rate tally aggregates scores from N generations 

of neutrons spreading though the system. As a result, uncertainty estimates are more realistic 

(i.e., larger). Depending on the problem these can be much larger. The method is effective and 

easy to use, requiring only one input parameter (N). (Autocorrelations in reaction rate tallies can 

also be reduced in the same way by batching tallies to include N generations without using the 

superhistory method.)  Either method reduces the uncertainty underprediction bias, which 

depends only on autocorrelation. Superhistory powering has been implemented in MONK and 

MORET4. 

Yamamoto, Nakamura, and Miyoshi applied a fission matrix method to address the problem 

of anomalous fission distributions arising from autocorrelation in a high dominance ratio two-

component multiplying system[15]. This system consisted of two nearly identical fissile solution 

slabs separated by a thick slab of water, very similar to the Phase I test problem 3, for which the 

most difficult case had a dominance ratio of 0.9974. Consequently, the keff error resulting from 

non-convergence of the fission source would normally be quite modest, i.e., less than 0.0026, but 

the aim of the method is a stable, accurate estimate of the fission distribution among the slabs. 

The procedure is to estimate the fission matrix elements in two steps: (1) collect a set of fission 

sites during a criticality calculation, and  run fixed source calculations from the fission sites to 

estimate the fission matrix elements, and (2) use the fission matrix to adjust fission neutron 

weights as if applying a "restoring force" to reduce the source distribution fluctuations.  This 

method is effective and can be used to estimate dominance ratios, but is not helpful for large 3D 

reactor problems. 

A very promising method is Wielandt’s[16],  in which a portion of the fission (determined 

by the parameter ke) source is subtracted from both sides of the transport equation, effectively 

increasing the interactions between decoupled fissionable zones. This reduces the eigenvalue of 

the first harmonic. The lower dominance ratio of the modified equation results in faster 

convergence, remarkably so when the control parameter ke is optimal. Furthermore, the faster 

convergence makes the usual convergence tests considerably more sensitive due to reduced 

autocorrelation. This is one of the methods that has been used to accelerate iterations in 

deterministic calculations[17]. 

Applied to Monte Carlo codes, the Wielandt method modifies the random walk in a way 

similar to the superhistory method, i.e.,  more than one generation of fission neutrons are 

followed during a single cycle. In this case, the algorithm randomly continues a fraction of the 



histories within the current cycle according to the control parameter, ke . Furthermore, a collision 

in any generation within a cycle can produce a fission neutron for the next cycle, not just the 

final generation of the cycle. As the initial source transient is worked off by iteration, ke is 

gradually adjusted. It is optimal to pick late iteration values of ke to be slightly above keff to 

lengthen the fission chains within a cycle. If ke< keff, then the fission chains within a cycle will 

not terminate, and if ke  is too large, then the iterations are not accelerated. As with the 

superhistory method, the number of individual neutron histories is not decreased, so there is no 

savings in computational effort. 

Yamamoto and Miyoshi first implemented Wielandt’s method in a simple test code, and then 

in MCNP4C using a procedure of repeated MCNP fixed source calculations in which each 

calculation represents one iteration. For a system very similar to the Phase I test problem 2 (an 

infinite lattice of depleted fuel pins with axially-dependent burnup and a high dominance ratio), 

the calculation converged the fission distribution in 35 cycles vs. the hundreds required for 

conventional power iteration. They noted that, especially in the early cycles, the method 

amplified source distribution fluctuations from cycle to cycle. 

More recently, Brown[18] implemented Wielandt’s method in a test version of MCNP5. To 

mitigate the large fluctuations in flux estimates in the early cycles, ke is initially set to keff+1 and 

then gradually reduced to the user-input value during cycles 3-20. When applied to a 2D PWR 

reactor case, convergence was achieved in 5 cycles vs. 80 for the standard power iteration 

method. The results were similar for several other systems. Figure 6 shows the dramatically 

different source entropy histories for one of the checkerboard fuel storage calculations performed 

both without and with Wielandt acceleration. Like the superhistory method, Wielandt 

acceleration has been shown to reduce or eliminates autocorrelation of reaction rate and flux 

tallies[19], providing more realistic uncertainty estimates. 

Stratified fission source sampling[20] was evaluated for problems where undersampling 

important fissile components is a possibility. In this method, at least one fission site is selected in 

each fissile component during each generation. This is accomplished by forcing collisions in 

components in which neutrons travel uncollided and by forcing low-weight fission sites into the 

site bank for the next cycle, with appropriate weight reductions. The efficacy of the method is 

comparable to the superhistory method, but it obviously requires intrusive intervention in the 

random walk and source selection procedures. Furthermore, to prevent substantial slowdowns in 

computing speed due to tracking insignificant neutrons, it is necessary to set a cut-off weight 

below which sites are removed by roulette from the stratified sample. Overall, when applied 

optimally, the method increases the computational effort only marginally. The method is 

currently implemented in MORET4. 

Of the methods explored, Wielandt’s method and superhistory powering seem be best suited 

to criticality calculations. They require little or no advanced knowledge of the system being 

analyzed, they use only one input parameter, and their iterations fit nicely into existing 

convergence tests, uncertainty estimates, etc. Unfortunately for code developers, however, they 

require modification of the random walks, complicating their application to criticality codes that 

already use other intrusive non-analog techniques for variance reduction of flux and reaction rate 

tallies. The MORET-5 code planned for release to the NEA Data Bank is to include Wielandt 

acceleration.  



4 COMPUTATIONAL STRATEGIES 

Even without the methods discussed above, use of engineering knowledge to identify 

important neutronic characteristics of the system being analyzed is one of the strongest 

protections against source convergence failure and erroneous uncertainty estimates. For example, 

some experienced Expert Group participants understood immediately that the most effective 

reflection in the fuel storage test problem would occur in the single location where the fuel 

bundle was stored at an interior corner of the concrete structure. A less experienced analyst could 

easily identify this effect with a few short Monte Carlo calculations, each representing a fuel 

bundle with concrete bordering on two sides, on one side, and on no sides. In many such 

complex systems, performing a few additional calculations can be very helpful in identifying 

challenging convergence characteristics and in establishing bounds for the full system 

eigenvalue. 

One procedure useful for all high dominance ratio systems is to repeat the criticality 

calculation with a several radically different initial sources (uniform, in or near a high-worth 

component, far from the high-worth component), in which case statistically identical results 

indicate convergence[3]. This was tested thoroughly in the fuel storage problem and the high-

burnup pin cell lattice. Of course, it can be used with any code, Monte Carlo or deterministic.  

The simplest procedure of all, of course, is to apply more computational power of the right 

kind. More histories per generation will reduce uncertainties but not uncertainty biases, and will 

reduce keff  and reaction rate/flux distribution biases. More skip cycles will generate source 

iteration progress. 

The single most useful procedure to detect statistical problems (as opposed to slow 

convergence) arising from the Monte Carlo method is to perform a set of calculations identical 

except for the pseudorandom number sequence, and to estimate uncertainties directly from the 

ensemble of reaction rate, flux, or keff estimates. These estimates are truly independent, so the 

resulting  uncertainty estimates will be accurate to within statistics. Assuming enough replicas 

are completed, any anomalies will emerge, as is shown in Figure 7. 

 

5 CONCLUSIONS  

Work on source convergence detection and acceleration has produced considerable progress 

during Phase 2 of the Expert Group. The statistical tests can generally be implemented without 

much difficulty. Acceleration methods involve some intervention in the random walk procedures, 

so it is more difficult to implement them, particularly in codes not aimed solely at criticality 

calculations.  

Today, the strongest combination is either the Wielandt or superhistory method plus an 

entropy test. This combination will make source convergence both more reliable and more 

reliably detectable. Although convergence of keff can occur without fully converging the fission 

source, a converged fission source will guarantee convergence of keff. These methods are not 

substitutes for good judgement, but they are tools to provide more information useful for 

understanding the physics and mathematics of specific cases. 



Finally, when effective detection or acceleration methods are used, complacency remains as 

a risk for which the best antidote is vigilance, physical intuition, analytical thoroughness, and the 

application of brute computational force. 
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Figure 1. Test Problem 1: Checkerboard fuel storage array (2D features only) 
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Figure 2. Test Problem 2: Infinite lattice of depleted fuel pins. 

 

 

 

 

Figure 3.  Test problem 3: Decoupled uranyl nitrate slabs 

 

 



 

 

Figure 4. Test Problem 4: Widely separated spheres, central sphere is critical. 

 



 

 

Figure 5. Two eigenvalue estimate histories for the checkerboard fuel storage problem (F B 

Brown) 

 



 

 

 

Figure 6. Source entropy shows the effectiveness of Wielandt acceleration in the checkerboard 

fuel storage problem. (F B Brown) 

 

 

 



 
 

Figure 7. Fission fractions in the central sphere of the 5x5x1 array for Monte Carlo 

replicas. 
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