





# Climate change vulnerability and adaptation in the energy sector, focus on the nuclear power sector

# Loreta Stankeviciute (IAEA) and Henri Paillère (NEA)

OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA) COP21, Thursday, 10 December 2015

# Climate Change (CC) and Extreme Weather (EW)





- > Gradual change: Changes in mean and variability over decades
  - Temperature
  - Precipitation
  - Wind patterns
  - Insolation
  - Sea level rise



- Extreme events: Occurrence above or below threshold, near to boundaries of observed values
  - Heat waves, heavy precipitation, drought, high winds/storms, etc...
  - Increasing frequency and intensity, affecting larger areas, prevailing longer

Source: Derived from IPCC

# Mitigation and adaptation





Much research has been done on how to mitigate climate change (CC) through changes in the energy system



- Few studies have evaluated the reverse: the impact of CC and extreme weather (EW) on energy infrastructure
- Expectations are that regardless of mitigation action now, there will be a certain level of CC (IPCC AR5 WGI)
  - ⇒ identify the impacts of CC and EW and adapt to lessen those impacts

# Impacts on energy infrastructure







Extraction/Resource

Transport

Conversion

Transmission & Distribution



### **IAEA** activities





#### IAEA workshop organised in 2010

- ⇒ Raised interest in Member States
- ⇒ Results published in *Climatic Change*





#### Ongoing study: Adaptation of nuclear and non-nuclear energy infrastructure

- Techno-economic evaluation
- Long-term climate change / Extreme weather
- Country case studies: Argentina, Cuba, China, Egypt, Ghana, Pakistan,
   Slovenia

# **CRP Case study: Argentina**





■ Observed climate trends and regional projections for CC → main vulnerabilities

presenting potential hazards for the electricity system.

#### Major vulnerability

- ⇒ Decrease in rainfall / streamflow of the rivers in the regions of Cuyo and Comahue
- ⇒ Home to ~ 52% of the country's hydropower plants (HPPs) capacity (> 18% of the country's installed capacity)

#### Quantification and adaptation

- ⇒ Model-based, reference vs risk-based scenarios
- ⇒ Decline in HPPs generation to be compensated by up to 4% of country's installed capacity by 2040
- Río Colorado Pichi Mahuid Río Limay - Paso Limay y Arrovito
- Vulnerability analysis indicates no threat to NPPs
  - ⇒ Methodology for siting of nuclear power plants, incl. possible flooding (eg. 23 m above the level of Parama river for Atucha I and II) and water availability for cooling

Source: Derived from CNEA

# **CRP Case study: Argentina**





- Desinventar database: key vulnerability in the electricity sector to EW events
- Special focus: heat waves / cold waves and power outages



Monthly frequency of extreme temperature events and power outages in the Buenos Aires metropolitan area (1971-2013)

#### Vulnerability

- ⇒ increased vulnerability of the electricity system, in particular its distribution component;
- ⇒ Distribution system more vulnerable to heat waves than cold waves, more vulnerable in megacity than smaller cities suffering equivalent heat waves conditions

Source: Derived from CNEA

# **CRP Case study: Slovenia**







Risks to power grids due to ice storms

Siting of transmission line



Source: Derived from "Jožef Stefan" Institute

# Towards more resilient energy sector





- Different analytical frameworks identify, assess, adapt
- Cumulative investment over 2014-2040: US \$25 trillion in oil and gas supply; US \$20 trillion in power supply
- Sectors with large inertia long lived assets
- Design and build with CC in mind: climate-safe

Source: Derived from IEA

Examples of CC

IAEA
International Atomic Energy Agency







Frazil ice

As a result, we managed to

sportation facilities.

Drought / heat wave

**Forest fires** 

Experience in fighting





News London 2012 Sport Comment Culture Business Money

Persistent drought in Romania

threatens Danube's power

may have to close down

Guardian Weekly, Tuesday 13 Decen

#### **How can CC events**

affect a NPP?

wave

Containment: ultimate barrier between reactor and environment





Storms (wind, debris), ice storms, forest fires, heat wave

Grid: take power from NPP and supply NPP with power



<u>Auxiliary blds:</u> emergency power gen. & other equip.

Floods, heat wave, snow storms

Cooling water: cool condenser & remove decay heat

# Cooling for thermo-electric power plants





**NORMAL OPERATION** 

River

**ACCIDENTAL CONDITIONS** 

### **Fossil** Boiler (furnace) Turbine Steam Coal

#### Same issues:

Rankine cycle, Different cooling options (oncethrough, closed, hybrid...), same environmental regulations (intake, thermal releases), etc

#### **Nuclear**



Circulating Water System (CWS)

Shut down → no fuel → no residual heat

Condenser Cooling Water



Essential Service Water System (ESWS) to remove residual (decay) heat: "Ultimate Heat Sink"

SAFETY

THERMAL EFFICIENCY

# Cooling for thermo-electric power plants





Thermal Efficiency decreases with increasing cooling temperature (thermodynamics AND environmental regulations)



# What data do we have?





IAEA Outage data (loss of kWh production) according to several classifications

2003 Operating Experience

#### FR-61 GOLFECH-1

#### 6. 2003 Outages

| Date   | Hours  | GW(e).h | Type | Code   | Description                                                |  |  |
|--------|--------|---------|------|--------|------------------------------------------------------------|--|--|
| 25 Jan | 21.0   | 27.0    | UF3  | Z      | VARIOUS, UNIT OPERATIONAL PROBLEMS (SOME NOT EXPLAINED)    |  |  |
| 04 Mar | 1671.0 | 21.0    |      | K      | OPERATION WITH POWER LIMITER BELOW MAXIMUM AVAILABLE POWER |  |  |
| 11 May | 8.0    | 2.0     | PP   | E      | PERIODIC TESTING WITH LOAD REDUCTION OR SHUTDOWN           |  |  |
| 01 Jun | 631.0  | 33.0    | XP   | K      | OPERATION WITH POWER LIMITER BELOW MAXIMUM AVAILABLE POWER |  |  |
| 02 Jun | 31.0   | 19.0    | XP   | S      | LOAD LIMITATION OR SHUTDOWN CAUSED BY INDUSTRIAL ACTION    |  |  |
| 13 Jun | 16.0   | 7.0     | UP3  | A33    | AIR COOLANT                                                |  |  |
| 22 Jun | 9.0    | 12.0    | UF3  | A33    | CIRCULATING PUMP                                           |  |  |
| 23 Jun | 14.0   | 9.0     | UP3  | A16    | STEAM GENERATOR INCLUDING 5G BLOWDOWNS                     |  |  |
| 01 Jul | 697.0  | 27.0    | XP   | K      | OPERATION WITH POWER LIMITER BELOW MAXIMUM AVAILABLE POWER |  |  |
| 04 Jul | 39.0   | 25.0    | UP3  | A32    | FEEDWATER PUMP (EXCLUDING TURBINE-DRIVEN FEEDWATER PUMP)   |  |  |
| 01 Aug | 335.0  | 20.0    | XP   | K      | OPERATION WITH POWER LIMITER BELOW MAXIMUM AVAILABLE POWER |  |  |
| 15 Aug | 406.0  | 532.0   | XF   | N<br>K | COMPLIANCE WITH REGULATIONS CONCERNING RIVER TEMPERATURES  |  |  |
| 01 Sep | 216.0  | 3.0     | UP3  | K      | VARIOUS, UNIT OPERATIONAL PROBLEMS (SOME NOT EXPLAINED)    |  |  |
| 10 Sep | 178.0  | 91.0    | XP   | K      | LOAD VARIATION                                             |  |  |
| 16 Sep | 81.0   | 4.0     | XP   | K      | OPERATION WITH POWER LIMITER BELOW MAXIMUM AVAILABLE POWER |  |  |
| 01 Oct | 258.0  | 59.0    | XP   | K      | FREQUENCY CONTROL, OPERA                                   |  |  |
| 02 Oct | 167.0  | 5.0     | XP   | K      | OPERATION WITH POWER LIMIT 7. Full Outages, Analysis b     |  |  |
| 01 Nov | 476.0  | 20.0    | XP   | K      | FREQUENCY CONTROL, OPERA                                   |  |  |
| 02 Nov | 25.0   | 3.0     | XP   | K      | REMOTE LOAD DISPATCH CONT                                  |  |  |
| 03 Nov | 176.0  | 2.0     | XP   | K      | OPERATION WITH POWER LIMIT Outage Cause                    |  |  |
| 04 Dec | 672.0  | 49.0    | XP   | S      | LOAD LIMITATION DURING STR                                 |  |  |
|        |        | •       | •    | •      | A Plant equipment failure                                  |  |  |



#### 7 Full Outages Analysis by Cause

| Outage Cause                                                                                                                                                        | 20      | 2003 Hours Lost |          |         | 1990 to 2003<br>Average Hours Lost Per Year |          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|----------|---------|---------------------------------------------|----------|--|
|                                                                                                                                                                     | Planned | Unplanned       | External | Planned | Unplanned                                   | External |  |
| Plant equipment failure     Refuelling without a maintenance     Inspection, maintenance or repair                                                                  |         | 9               |          | 897     | 222<br>4<br>3                               |          |  |
| combined with refuelling ). Inspection, maintenance or repair without refuelling                                                                                    |         |                 |          | 81      |                                             |          |  |
| Testing of plant systems or components     Nuclear regulatory requirements     Load-following (frequency control, reserve shutdown due to reduced energy demand)    |         |                 |          | 85      | 3<br>13                                     |          |  |
| <ol> <li>Environmental conditions (flood, storm,<br/>lightning, lack of cooling water due to<br/>dry weather, cooling water temperature<br/>limits etc.)</li> </ol> |         |                 | 406      |         |                                             |          |  |
| . Others<br>Subtotal                                                                                                                                                | 1       | 21<br>30        | 406      | 1063    | 245                                         |          |  |



# What data do we have?





#### Outages per cause from 2004 to 2011

| Cause | Duration<br>(1000 h) | Energy<br>Loss (TWh) | No. of<br>events |
|-------|----------------------|----------------------|------------------|
| Α     | 2 728                | 648                  | 12 039           |
| В     | 299                  | 149                  | 236              |
| С     | 3 391                | 2 807                | 2 216            |
| D     | 600                  | 307                  | 1 336            |
| E     | 140                  | 28                   | 6 238            |
| F     | 213                  | 134                  | 54               |
| G     | 496                  | 376                  | 80               |
| Н     | 284                  | 65                   | 483              |
| J     | 642                  | 58                   | 1 327            |
| K     | 2 007                | 165                  | 4 873            |
| L     | 47                   | 14                   | 608              |
| M     | 38                   | 37                   | 35               |
| N     | 2 776                | 112                  | 3 215            |
| P     | 6                    | 5                    | 23               |
| R     | 438                  | 47                   | 642              |
| S     | 874                  | 78                   | 836              |
| T     | 125                  | 1                    | 88               |
| U     | 0.07                 | 0.03                 | 1                |
| Z     | 561                  | 26                   | 746              |
| Total | 15 665               | 5 054                | 35 076           |

Awareness of issues but limited economic impact so far

by \_ environmental conditions

17.7% duration
2.2% Energy Loss
9.2% Events

|   | 0  |                                                           |
|---|----|-----------------------------------------------------------|
| L |    | Warm cooling water                                        |
|   | 1  | Cold cooling water                                        |
| Г | 2  | Flood                                                     |
|   | 3  | Low water level                                           |
|   | 4  | Lightning / thunderstorm                                  |
|   | 5  | Storms (typhoon, hurricane)                               |
|   | 6  | Other weather-related                                     |
|   | 7  | Non-W env.: pollution                                     |
|   | 8  | Unspec. env. restriction                                  |
|   | 9  | Earthquake / tsunami                                      |
|   | 10 | Seasonal variation CWT                                    |
|   | 11 | Excluded: not environmental (market, techincal, cleaning) |

IAEA PRIS database

# What data do we have?





- IAEA/NEA incident database, data from national reports, nuclear regulators and operators. Examples of shut downs due to external events:
  - Loss of "ultimate heat sink", Cruas NPP, France, December 2009 (due to blockage of ESWS intake by massive quantity of algae)
  - CWS water intake blockage, Olkiluoto NPP, Finland, January 2008 (due to frazil ice)
  - CWS water intake blockage, Osarshamn NPP, Sweden, September 2013 (due to jelly fish)
  - Loss of off-site power, Dungeness B NPP, UK, October 2013 (caused by debris landing on power lines during storm)
- Other data provided in the course of the NEA study in the form of "case studies"
- Data about incidents themselves, but often information about measures required by the regulators to reduce the risks of similar events.



#### Olkiluoto NPP

#### Reactor trip at Olkiluoto 2 as a result of the freezing of coolant

Seawater cooled rapidly in front of the Olkiluoto nuclear power plant on the morning of Saturday 5 January 2008. The frazil ice formed as a result of this cooling blocked the circulating water screening filters of Olkiluoto 2 and weakened the flow of the seawater used as coolant in the plant. As a result, a turbine trip occurred at the plant unit, leading to a reactor trip. In connection with the event, a steam



# **Adaptation measures**





#### **Adaptation Measures in Finnish NPPs**

#### Olkiluoto NPP:

- Measures to prevent blockage (by snow) of air intakes of heating, ventilation and emergency diesel generators
- OL3: heating of air intakes
- Pumping "warm water" upstream of cooling water intake to prevent frazil ice formation



#### Loviisa NPP:

- Construction of air cooling system (tower) to supplement sea cooling in case of frazil ice or other pbs with sea water
- Heating water intake grids to prevent frazil or pumping warm water upstream
- Study on building deep water intake in case of high sea temperatures (possibly economical in the future)



# **Adaptation measures**





#### **Adaptation Measures in French NPPs**

#### Le Blayais flooding (Dec. 1999)

- High tide + storm surge + waves generated by high wind in the estuary (not linked to CC)
   → exceeded the worst-case "design scenario"
- Water went over the dikes flooding of NPP site and in units 1 & 2
- INES level 2





#### Review of flood risks / adaptation

- Re-assessment of flood risks for all 19 NPPs
- Improvements where necessary (elevated dikes, water tight doors, plugging, etc) & specific flood procedures
- Upgraded protection of most NPP against floods – for a cost of 110 M€

EDF presentation, RIC 2010, External flood and extreme precipitation hazard analysis

# The cost of 'inaction'





#### Direct impact:

- Loss of production due to partial/full outage because of:
  - compliance to environmental regulations (e.g. thermal releases) or safety regulations (max. temp. cooling water for safety-related cooling systems) or
  - Event affecting operation of NPP (e.g. the cooling system) or
  - Event affecting the transmission grid.
- Loss of efficiency due to higher cooling water temperature (data not publically available)
- Cost of repairs, refurbishment, safety upgrades

#### Indirect impact:

- Purchase by utility of power on "spot market" to compensate for loss of production
- Compensation of customers (energy-intensive industry) required to reduce their electricity consumption (load management/shedding)
- Who pays what? Insurers, operators, tax payers?

# Dealing with CC in the nuclear sector

- Guidelines (e.g. siting), safety standards, <u>safety assessments</u> and regulations
- Design (e.g. taking into account CC risks)
- <u>Technology</u> (e.g. cooling technologies, reactor design, onsite water production)
- Planning and plant management (e.g. based on demand forecast, outage planning)
- Demand-side management







### **Technical solutions**







#### **R&D** needs





- **Technology:** (objectives: reduced usage of water / reduced impact / reduced costs)
  - Cooling technologies:
    - Closed cooling systems, hybrid systems
    - "low" profile cooling towers (public acceptance)
    - Dry cooling (e.g. Bilibino NPP, Russia)
    - More efficient Heat Exchanger equipment (e.g. Condensers)
  - Modelling of cooling water intakes & thermal releases to reduce environmental impact and/or improve efficiency (\*)
  - non-traditional water resources (e.g. Treated waste water) (e.g. Palo Verde, AZ, USA)
  - On-site production of "fresh" water (desalination)
  - Innovative reactor designs (e.g. Gen IV, higher operating temperatures/efficiency) Advanced power conversion technologies (e.g. SCO2)





Palo Verde NPP, largest NPP in the United States, uses treated waste water from city of Phoenix and other municipalities.



### **R&D** needs





- Weather forecast: (objectives: improved management of supply [e.g. Outages] and demand)
- Planning based on better assessment of demand.
  - o "air temperature" is most important parameter driving electricity demand. (e.g. In France, in winter, -1°C  $\sim$  2300 MW electricity production)
  - predicting consumption with 1 to 2 weeks lead-time can help optimise selection of generating units to meet demand.

#### Planning outages:

- planning refuelling and maintenance outages during peak heat periods (provided outages can be balanced by increased production at other sites or imports) for most vulnerable units (located on rivers)
- After 2003 heat wave, EDF reviewed its maintenance planning to ensure operation of all coastal units during summer
- R&D to improve forecasting tools:
  - to select, size and engineer future plants, test robustness against CC / extreme weather events.
  - Multi-scale approaches to combine long-term forecasts (several decades, time scale of investment / construction / operation) with short term projections (for operational purposes, fleet management)

# Conclusions





- New plants: (typically 60 year lifetime  $\rightarrow$  operation until ~2080)
  - Design, siting take into account CC risks. (max. sea level rise, max. temp., max. wind speed, etc...).

#### Existing plants:

- > Siting and safety case take into account (known) extreme weather events
- Safety requirements are always a driver for change (often, safety upgrades improve CC resilience too). For non-safety issues: (e.g. thermal efficiency, outages due to environmental reasons), "economic decision"

#### **INACTION**

- cost of adaptation vs. electricity market 'economics' (wholesale price, overcapacity)
- adaptation can lead to reduced power output (e.g. closed cycle vs. direct cooling)
- single plant operator
- remaining lifetime (~10y)
- "low" number of events



#### **ADAPTATION**

- safety requirements
- fleet operator
- remaining lifetime (~20-30y)
- "high" number of events
- security of energy supply

### Conclusions





- Importance of addressing (generation + grid + consumers) together to design resilient energy systems
- (Short term) economics not enough to drive changes (viewed as costs):
  - Role of governments to put in place investment framework for long term
  - Role of regulations to drive technological changes.
- In terms of R&D needs / activities with respect to nuclear power & CC:
  - Cooling & other technologies to reduce water dependence
  - Forecasting methods to improve plant/fleet management & balance supply & demand
  - Safety assessment methods to address future CC events in design & safety cases
  - Economic assessment methodology to make a better case for adaptation.
- Nuclear power technology is adapting to CC to make it safer & more resilient against Climate Change: a robust low C generating solution for the future!