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Climate Change (CC) and 
Extreme Weather (EW) 

Source: Derived from IPCC 

 Gradual change: Changes in mean and variability over decades 

• Temperature 

• Precipitation 

• Wind patterns 

• Insolation 

• Sea level rise 

 

 

 Extreme events: Occurrence above or below threshold, near to boundaries of 
observed values  

• Heat waves, heavy precipitation, drought, high winds/storms, etc… 

• Increasing frequency and intensity, affecting larger areas, prevailing longer   
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Mitigation and adaptation 

 Few studies have evaluated the reverse: the impact of CC and 
extreme weather (EW) on energy infrastructure 

 Expectations are that regardless of mitigation action now, there will 
be a certain level of CC (IPCC AR5 WGI) 

Much research has been done on 
how to mitigate climate change (CC) 
through changes in the energy system 

 identify the impacts of CC and EW and adapt to lessen 
those impacts 
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Impacts on energy 
infrastructure 

Extraction/Resource Transport Conversion 
Transmission 

& 
Distribution 
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IAEA activities 

IAEA workshop organised in 2010 

 Raised interest in Member States 

 Results published in Climatic Change 

 

Ongoing study: Adaptation of nuclear and non-nuclear energy infrastructure 

- Techno-economic evaluation  

- Long-term climate change / Extreme weather 

- Country case studies: Argentina, Cuba, China, Egypt, Ghana, Pakistan, 
Slovenia      
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CRP Case study: Argentina 

   Observed climate trends and regional projections for CC        main vulnerabilities 
presenting potential hazards for the electricity system.  

Major vulnerability 
 Decrease in rainfall / streamflow of the rivers in 

the regions of Cuyo and Comahue 
 Home to ~ 52% of the country’s hydropower 

plants (HPPs) capacity (> 18% of the country’s 
installed capacity) 
 

Quantification and adaptation 
 Model-based, reference vs risk-based scenarios 
 Decline in HPPs generation to be compensated 

by up to 4% of country’s installed capacity by 
2040 
 

Source: Derived from CNEA 

 Vulnerability analysis indicates no threat to NPPs 

 Methodology for siting of nuclear power plants, incl. 
possible flooding (eg. 23 m above the level of Parama river 
for Atucha I and II) and water availability for cooling 
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   Desinventar database: key vulnerability in the electricity sector to EW events 
 Special focus: heat waves / cold waves and power outages 

 

Source: Derived from CNEA 

Vulnerability 
 increased vulnerability of the electricity system, in particular its distribution component; 
 Distribution system more vulnerable to heat waves than cold waves, more vulnerable in megacity 

than smaller cities suffering equivalent heat waves conditions 
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Monthly frequency of extreme temperature events and power 
outages in the Buenos Aires metropolitan area (1971-2013) 

CRP Case study: Argentina 
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 GIS supported vulnerability evaluation  
 Risks to power grids due to ice storms  

 Siting of transmission line 
 Siting of windfarms 

Risk-assessed spatial suitability for windfarms 

Risk-assessed siting for two alternative power lines 

Spatial Attractiveness Environmental Vulnerability 

Windfarms 
 Very suitable area: 31 km2 

 
 Potential capacity:  930 MW 

 
 Potential annual energy 

production:  1.68 TWh 
 

Source: Derived from “Jožef Stefan” Institute 

CRP Case study: Slovenia 
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Towards more resilient 
energy sector 

 

 Different analytical frameworks  – identify, assess, adapt 

 Cumulative investment over 2014-2040: US $25 trillion in oil and 
gas supply; US $20 trillion in power supply 

 Sectors with large inertia – long lived assets 

 Design and build with CC in mind: climate-safe 

 

Source: Derived from IEA 
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Examples of CC 
impacts on NPP 

Storms 
Floods 

Drought / 
heat wave 

Forest fires 

Frazil ice 

Ice storms 
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How can CC events 
affect a NPP? 

Grid: take power from 
NPP and supply NPP 
with power 

Cooling water: cool 
condenser & remove 
decay heat 

Storms (wind, debris), ice storms, 
forest fires, heat wave 

Storms (debris), 
heavy rain, floods, 
frazil ice, heat 
wave, drought, 
algae, … 

Containment: ultimate 
barrier between 
reactor and 
environment 

Floods, heat 
wave 

Auxiliary blds:  emergency power 
gen. & other equip. 

Floods, heat wave, 
snow storms 
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Cooling for thermo-electric 
power plants 

Fossil Nuclear 

N
O

R
M

A
L 

O
P

ER
A

TI
O

N
 

A
C

C
ID

EN
TA

L 
C

O
N

D
IT

IO
N

S 

Shut down  no 
fuel  no residual 

heat 

Same issues: 
Rankine cycle, 

Different cooling 
options (once-

through, closed, 
hybrid…), same 
environmental 

regulations 
(intake, thermal 

releases), etc 

Essential Service Water System (ESWS) to remove residual 
(decay) heat: “Ultimate Heat Sink” 

Circulating Water System (CWS) 
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Cooling for thermo-electric 
power plants 

Thermal Efficiency decreases with increasing cooling temperature 
(thermodynamics AND environmental regulations) 

THERMODYNAMICS 

THERMODYNAMICS 
+ 

REGULATIONS Increased ambient temperatures  
 reduced efficiency & environmental compliance  
 reduced electric output (revenue stream) 
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 IAEA Outage data (loss of kWh production) 
according to several classifications 

What data do we have? 
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What data do we have?  

IAEA PRIS database 

17.7% duration 
2.2% Energy Loss 

9.2% Events 

Outages caused 
by 
environmental 
conditions 

Awareness of issues but limited 
economic impact so far 
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 IAEA/NEA incident database, data from national reports, 
nuclear regulators and operators. Examples of shut 
downs due to external events: 

 Loss of “ultimate heat sink”, Cruas NPP, France, December 
2009 (due to blockage of ESWS intake by massive quantity 
of algae) 

 CWS water intake blockage, Olkiluoto NPP, Finland, 
January 2008 (due to frazil ice) 

 CWS water intake blockage, Osarshamn NPP, Sweden, 
September 2013 (due to jelly fish) 

 Loss of off-site power, Dungeness B NPP, UK, October 
2013 (caused by debris landing on power lines during 
storm) 

 Other data provided in the course of the NEA study in 
the form of  “case studies”  

 Data about incidents themselves, but often information 
about measures required by the regulators to reduce 
the risks of similar events. 

What data do we have?  
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Adaptation measures 

 Olkiluoto NPP: 
 Measures to prevent blockage (by snow) of air 

intakes of heating, ventilation and emergency 
diesel generators 

 OL3: heating of air intakes 
 Pumping “warm water” upstream of cooling water 

intake to prevent frazil ice formation 

  Loviisa NPP: 
 Construction of air cooling system (tower) to 

supplement sea cooling in case of frazil ice 
or other pbs with sea water 

 Heating water intake grids to prevent frazil 
or pumping warm water upstream 

 Study on building deep water intake in case 
of high sea temperatures (possibly 
economical in the future) 

Adaptation Measures in Finnish NPPs 
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 Le Blayais flooding (Dec. 1999) 
 High tide + storm surge + waves generated 

by high wind in the estuary (not linked to CC) 
 exceeded the worst-case “design 
scenario” 

 Water went over the dikes – flooding of NPP 
site and in units 1 & 2 

 INES level 2  

 
 Review of flood risks / adaptation  

 Re-assessment of flood risks for all 19 NPPs 
 Improvements where necessary (elevated 

dikes, water tight doors, plugging, etc) & 
specific flood procedures 

 Upgraded protection of most NPP against 
floods – for a cost of 110 M€ 

Adaptation Measures in French NPPs 

EDF presentation, RIC 2010, External flood and extreme precipitation hazard analysis 

Adaptation measures 
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 Direct impact: 

 Loss of production due to partial/full outage because of: 

o compliance to environmental regulations (e.g. thermal releases) or 
safety regulations (max. temp. cooling water for safety-related cooling 
systems) or  

o Event affecting operation of NPP (e.g. the cooling system) or 

o Event affecting the transmission grid. 

 Loss of efficiency due to higher cooling water temperature (data not 
publically available) 

 Cost of repairs, refurbishment, safety upgrades 

 Indirect impact: 

 Purchase by utility of power on “spot market” to compensate for loss of 
production 

 Compensation of customers (energy-intensive industry) required to reduce 
their electricity consumption (load management/shedding) 

 Who pays what? Insurers, operators, tax payers? 

The cost of ‘inaction’ 
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 Guidelines (e.g. siting), safety 
standards, safety assessments 
and regulations 

 

 Design (e.g. taking into account 
CC risks) 

 

 Technology (e.g. cooling 
technologies, reactor design, on-
site water production) 

 

 Planning and plant management 
(e.g. based on demand forecast, 
outage planning) 

 

 Demand-side management 

Dealing with CC in the 
nuclear sector 
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Technical solutions 
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 Technology:   (objectives: reduced usage of water / reduced impact / 

reduced costs) 
 

 Cooling technologies:  

o Closed cooling systems, hybrid systems 

o “low” profile cooling towers (public acceptance) 

o Dry cooling (e.g. Bilibino NPP, Russia) 

o More efficient Heat Exchanger equipment (e.g. 
Condensers) 

 Modelling of cooling water intakes & thermal 
releases to reduce environmental impact and/or 
improve efficiency (*) 

 non-traditional water resources (e.g. Treated waste 
water) (e.g. Palo Verde, AZ, USA) 

 On-site production of “fresh” water (desalination) 

 Innovative reactor designs (e.g. Gen IV, higher 
operating temperatures/efficiency) -  Advanced 
power conversion technologies (e.g. SCO2) 

R&D needs 
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 Weather forecast:   (objectives: improved management of supply [e.g. Outages] and demand) 

 
  Planning based on better assessment of demand. 

o “air temperature” is most important parameter driving electricity demand. 
 (e.g. In France, in winter, -1ºC  2300 MW electricity production) 
o predicting consumption with 1 to 2 weeks lead-time can help optimise selection of 

generating units to meet demand. 

 Planning outages: 
o planning refuelling and maintenance outages during peak heat periods (provided 

outages can be balanced by increased production at other sites or imports) for most 
vulnerable units (located on rivers) 

o After 2003 heat wave, EDF reviewed its maintenance planning to ensure operation of 
all coastal units during summer 

 

 R&D to improve forecasting tools: 
o to select, size and engineer future plants, test robustness against CC / extreme 

weather events. 
o Multi-scale approaches to combine long-term forecasts (several decades, time scale 

of investment / construction / operation) with short term projections (for operational 
purposes, fleet management) 

R&D needs 
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Conclusions 
 
 New plants: (typically 60 year lifetime  operation until 2080) 

 Design, siting – take into account CC risks. (max. sea level rise, max. temp., 
max. wind speed, etc...).  

 Existing plants: 
 Siting and safety case take into account (known) extreme weather events 
 Safety requirements are always a driver for change (often, safety upgrades 

improve CC resilience too). For non-safety issues: (e.g. thermal efficiency, 
outages due to environmental reasons), “economic decision” 
 
 
 
 
 
 
 

 

INACTION ADAPTATION 

o cost of adaptation vs. electricity 
market ‘economics’ (wholesale price, 
overcapacity) 

o adaptation can lead to reduced power 
output (e.g. closed cycle vs. direct 
cooling) 

o single plant operator 
o remaining lifetime ( 10y) 
o “low” number of events 

o  safety requirements 
o  fleet operator 
o  remaining lifetime ( 20-30y) 
o  “high” number of events 
o  security of energy supply 

Need to make the economic case for resilience 
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 Importance of addressing (generation + grid + consumers) together to design 
resilient energy systems 

 
 (Short term) economics not enough to drive changes (viewed as costs): 

 Role of governments to put in place investment framework for long term 
 Role of regulations to drive technological changes. 

 
 In terms of R&D needs / activities with respect to nuclear power & CC: 
 

 Cooling & other technologies to reduce water dependence 
 Forecasting methods to improve plant/fleet management  & balance supply 

& demand 
 Safety assessment methods to address future CC events in design & safety 

cases 
 Economic assessment methodology to make a better case for adaptation. 

 
 Nuclear power technology is adapting to CC to make it safer & more resilient 

against Climate Change: a robust low C generating solution for the future! 

Conclusions 
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