Thermochemical Database (TDB) Project

The NEA Thermochemical Database Project (TDB) represents an international reference point with regard to high standard thermochemical data for the radioactive waste management community

High-quality thermochemical data

- For performance assessments of deep geological repositories.
- Internally consistent formation and reaction data for ~1 500 relevant species (aqueous, solid and gas).

A work philosophy

- Transparent evaluation and selection of data based on expert reviews of traceable scientific literature.
- Independent expert validation (peer review), strict technical and procedural guidelines.
- Commitment to knowledge management, and project management at the international level.

Motivation

Meeting the need for an internationally-recognised, high-quality thermochemical database for safety assessments of deep geological repositories

Background

 Safety assessments of deep geological repositories include analysis of potential radionuclide transport through engineered and natural barriers.

The role of thermochemical data

- The prediction of radionuclide migration from near-field into the far-field and biosphere encompasses solubility and speciation calculations (geochemical modelling).
- Geochemical modelling relies on available thermochemical data.

The NEA response

- Internationally-recognised, internally consistent, non-site-specific, and fully traceable database of high-quality thermochemical data.
- Availability of high-quality data through the TDB contributes to quality assurance in geochemical modelling.
- Harmonisation of workflow, selection process, methodologies and standards.

Publications and data services

Thorough critical reviews for selected elements and online, free-of-charge access to quality-assured thermochemical data

The Chemical Thermodynamic Series (CTS)

- Peer-reviewed publications on the thermochemical properties of selected elements and state-of-the-art reports (SOARs).
- Tables of selected data, detailed discussions on the selection process, and expert reviews of relevant articles.

CTS volumes published

Uranium · Americium · Technetium · Neptunium and Plutonium · Update of Actinides and Technetium · Nickel · Selenium · Zirconium · Organic Ligands · Solid Solutions (SOAR) · Thorium · Tin · Iron (Part I)

Upcoming publications

Iron (Part II) · 2nd Update of Actinides and Technetium · Ancillary Data · Molybdenum · Cements (SOAR) · High Ionic Strength Systems (SOAR)

Online thermochemical database

- Online access to selected data and list of bibliographic references through a modern user interface.
- Data quality control enhanced with internal consistency checks and database structural constraints.
- Distribution of database files formatted for well-established geochemical modelling software (PHREEQC).

Community engagement

Organisation of courses on thermochemical data selection, publication of articles

TDB course on thermodynamic data collection and assessment

One-day course in conjunction with major conferences. Contents:

- An overview of the TDB activities.
- A walk-through of the guidelines for collection and analysis of thermochemical data.
- Practical application examples of critical evaluation and assessment.
- World-class experts and invited speakers.
- For scientists and professionals at different career stages.

Articles

Martinez, J.S. et al. (2019), "The new electronic database of the NEA Thermochemical Database Project", *Appl. Geochem.*, Vol. 107, pp. 159-170.

Ragoussi, M.E. and D. Costa (2019), "Fundamentals of the NEA Thermochemical Database and its influence over national nuclear programs on the performance assessment of deep geological repositories", *J. Environ. Radioact.*, Vol. 196, pp. 225-231.

Costa, D. and M.E. Ragoussi (2017), "Selection of reference thermodynamic data for modelling of deep geological repositories: Present and future of the NEA Thermochemical Database Project", *J. Solution Chem.*, Vol. 46, pp. 1760-1766.

Ragoussi, M.E. and S. Brassinnes (2015), "The NEAThermochemical Database Project: 30 years of accomplishments", *Radiochim. Acta*, Vol. 103, pp. 679-685.

Participants

Agencies, regulators, and research laboratories co-ordinated by the NEA

There are 15 sponsoring organisations from 12 NEA member countries in the current phase of the project (TDB-6):

Belgium NIRAS/ONDRAF

Canada NWMO

Czech Republic SÚRAO

Finland POSIVA

France ANDRA/CEA

Germany KIT

Japan JAEA

Netherlands COVRA

Sweden SKB

Switzerland NAGRA/ENSI/PSI

Jnited Kingdom RWM

United States

Additional information

Links

TDB project - www.oecd-nea.org/dbtdb

CTS volumes - www.oecd-nea.org/dbtdb/info/publications

TDB project guidelines – www.oecd-nea.org/dbtdb/guidelines

Electronic TDB- www.oecd-nea.org/dbtdb/tdbdata

TDB courses – www.oecd-nea.org/dbtdb/courses/tdb2019

Contacts

Data Bank OECD Nuclear Energy Agency (NEA) 46, quai Alphonse Le Gallo 92100 Boulogne-Billancourt, France

E-mail: tdb@oecd-nea.org