

Waste Management

OECD-NEA National-Level Guidance on Building a Framework for Post-Nuclear Accident Recovery Preparedness

Tobias Schlummer

Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection, Germany (BMUV)

OECD-NEA Workshop on preparedness for post-nuclear accident recovery 27. - 28. October 2022

Content

- Waste generated in nuclear or radiological emergencies
- National policy, strategy, legislation and planning
- Modelling tools
- Radiological criteria

Waste generated in emergencies

- Nuclear and radiological emergencies can generate large volumes of radioactive waste (contaminated waste).
 - Large amounts of waste generated from applying remedial protective actions off-site.
 - Secondary wastes created through treatment and reprocessing of contaminated waste.
- Contamination entering conventional waste streams (municipal/industrial waste etc.).

Waste generated in emergencies

- ... may be more heterogeneous and voluminous than waste arising from routine operations,
- ... will have activity concentrations depending on initial level of contamination in the environment
 - → larger volumes of lower activity waste (remedial measures)
 - → smaller volumes of higher activity waste (e.g. secondary waste)
- ... may quickly **exceed the existing capacity** for management of radioactive waste from routine operations.

→ Preparedness for waste management in emergencies is important.

National policy, strategy, legislation & planning

- The national framework for waste management should...
 - distinguish between waste management during routine operations and during emergencies,
 - apply a graded approach that accounts for different amounts and types of waste from a range of emergency scenarios,
 - adequately cover the surge in capacity that is likely to be required in severe emergencies.

National policy, strategy, legislation & planning

- Is there a need for modified or additional legal frameworks?
 (incl. framework for conventional waste management)
- Consider remediation and decontamination strategies.
- Consider application of (modified) waste hierarchy encouraged by the IAEA for radioactive waste from routine operations.
 - → reduce waste generation → reuse/recycle → dispose as waste

National policy, strategy, legislation & planning

Phase 1 – Immediate actions, e.g. characterisation, collection, segregation, transport

Phase 2 – Short-term actions, e.g. establishing staging areas, detailed characterisation and segregation, packaging, treatment, temporary storage

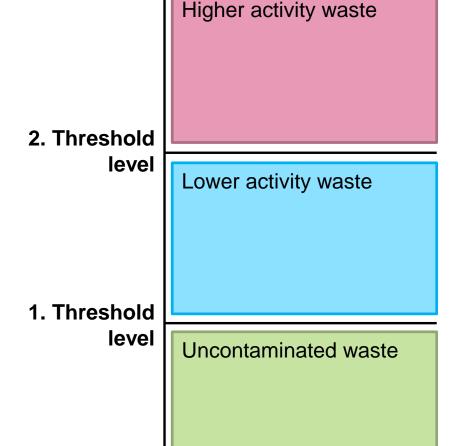
> Phase 3 – Medium-term actions, e.g. interim storage, reprocessing

> > Phase 4 – Longterm actions, disposal

 The level of preparedness should follow a graded approach regarding the phase of the emergency response.

Modelling

- Modelling allows to estimate potential types, activity levels, and volumes of waste that could be generated in a nuclear or radiological emergency.
- Modelling can be used
 - in the preparedness phase to support planning for waste management,
 - in an emergency or during recovery to support decision making
 (→ remedial actions).
- Several modelling tools have been developed, such as:
 - CONDO, ERMIN, RODOS, WEST


Radiological criteria

- Establishing radiological criteria is highly important to support the specification or classification of waste.
 - Important for reducing the amounts of waste that have to be treated as radioactive or contaminated.
 - → Where possible, uncontaminated or lightly contaminated waste should be segregated and dealt with using appropriate waste routes.

Radiological criteria

- Nuclide specific threshold values for the activity mass concentration (Bq/kg).
- Threshold values may function similarly to clearance and exemption levels for normal operations (IAEA GSG-11),
- Additional higher threshold levels may support graded treatment and disposal schemes.

→ See Annex B of EGRM-report for national examples.

Thank you!

Further existing guidance (non-exhaustive):

- IAEA (2009), Pre-disposal Management of Radioactive Waste, Safety Standards Series No. GSR Part 5, International Atomic Energy Agency, Vienna
- CODIRPA (2012), "Policy elements for post-accident management in the event of nuclear accident",
 Steering Committee for the Management of the Post-Accident Phase of a Nuclear Accident (CODIRPA)
- STUK et al. (2014), "Protective Measures in Early and Intermediate Phases of a Nuclear or Radiological Emergency",
 STUK Radiation and Nuclear Safety Authority, Finland (Nordic Flag Book)
- IAEA (2014), Radiation Protection and Safety of Radiation Sources, International Basic Safety Standards,
 Safety Standards Series, No. GSR Part 3, International Atomic Energy Agency, Vienna
- IAEA (2017), Management of Large Volumes of Waste Arising in a Nuclear or Radiological Emergency, IAEA-TECDOC-1826, International Atomic Energy Agency, Vienna
- IAEA (2018), Arrangements for the Termination of a Nuclear or Radiological Emergency,
 IAEA Safety Standards Series No. GSG-11, International Atomic Energy Agency, Vienna
- MoE (2018a), "Decontamination projects for radioactive contamination discharged by Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Station Accident", Ministry of the Environment, Japan, Tokyo
- NEA (2019a), Challenges in Nuclear and Radiological Legacy Site Management: Towards a Common Regulatory Framework,
 OECD Publishing, Paris
- NEA (2021c), "Characterisation Methodology for Unconventional and Legacy Waste", OECD Publishing, Paris